vertdata

Volume 3

Issue # 4 ©

LUNAR LANDER

by

Gilbert Hemmer

This game, using three pages of memory, provides
a way to add two—dimensional movement to yow
display. This is done by using a control "bit"
to point to the location to begin drawing on the
screen, | got the idea for this method after
reading the "Doodle Program" (Questdata #8) and
thought it would be a simple way to point to a
location on the screen. The control bit points
to the upper left corner of a figure to be
drawn. For this program it is a one byte wide by
five byte high spacecraft. Two bytes per line
are actually used for the display since the
figure is shifted right to the location of the
Ubit" within the control byte.

A lunar lander, with you controlling its motion,
attempts to make a landing. It moves downward
from the pull of gravity with upward or sideways
motion controlled by firing "rockets". This
motion is simutated by incrementing movement
counts each time through the program so that
each successive time the spacecraft is drawn it
is moved a greater distance.

How the Program Works

The program uses input from the keyboard to
control the movement of the spaceship. A "O"
turns the rockets off. A "" moves the ship left
and a "2" moves it right. Any other input will
move the spaceship up. Only one rocket can be
fred at a time. The input/movement subroutine
takes the input and increments the approprate
movement count. The up movement is subtracted
from the down movement and the difference is
used to move the control byte either up or down.
The left movement is subtracted from the right
movement with the difference used to shift the
control "bit" either left or right. Once the new
location for the spaceship has been determined
the program goes to the display subroutine. The
old location of the spaceship is first cieared.
The first byte of the new location, set by the
control byte, is checked to see if it is already
occupied by the surface line. If it is, the

temporary memory address is set to zero and the

subroutine returns to the main program. If the
location is not occupied, the data byte is drawn
into the location and shifted right to the loca—
tion of the control "bit". The display location
is moved down one line and the check for occupa-
ncy and drawing is repeated. This continues
until the spaceship is completely drawn. The
main program is returned to and first checks if
the temporary memory address is zero (the sur—
face is hit) and branches to draw the crash if
it is. This is done by first moving the display
address up six lines, since it is at the sur—
face, and pointing to the crash data and then
going to the draw routine. [f the spaceship was
completely drawn the next line is checked (the
display address is pointing there) to see if it
is the surface. If it is blank, the program
branches to a delay and then goes back to get
another input. A check is made of the movement
and if there is no left/right movement and the
downward movement is 2 or less, a man is drawn
and the program resets, otherwise it draws a
crash and resets.

An added feature to the input/movement subrou-
tine is a fuel count which is decremented each
time through the program if any of the rocket
inputs have been pressed. The count is shown on
the hex display. When zero is reached, the "Q"
comes on and the keyboard inputs are ignored
with the spaceship falling to the surface.

Playing the. Game

Load the program and CO 04 00 into the start of
page O since the program begins on page 4 Push
Run and the screen will show the display page.
Pushing Input will clear the screen and draw the
landing surface and the spaceship in the upper
left corner. Push an initial rocket control,
either the 0, 1, or 2 key, since an "up" key
will roll the spaceship through the top of the
screen and into the bottom resulting in a crash
being drawn. Push the Input again to start the
spaceship motion. Pushing the various movement

COSMAC CLUB COSMAC CLUB COSMAC CLUB COSMAC CLUB COSMAC CLUB COSMAC

- —— . e

Page 2

keys will control the spaceship. You must stop
the sideways motion and slow the downward motion
for a landing. If you take too long and run out
of fuel, the Q light comes on and the spaceship
will fall to the surface. The spaceship can move
through the sides of the screen but a crash will
be drawn if it moves out the top. Whether you
make it or crash, pushing the Input will reset
the game for another try. To change the difficu-
Ity of the landing, the fuel count at loacation
0448 or the down movement at location 047F can
be changed. Although a score counter is not in
the program, you could try and see the minimum
amount of fuel you use to land the spaceship.

Going Further

This program can be moved to any other pages of
memory by simply changing the high order bytes
at initialization. | used the input/movement
subroutine for ease of understanding the prog-
ram. If an additional register is needed, the
subroutine can be easily incorporated into the
main program. You can draw youwr own spacecraft
of one to five bytes or adjust the display count
and display location resets for a spaceship of
any size, There should be sufficient room remai—
ning in the two program pages to accomodate
various modifications.

This program adds another dimension to video
animatiom. | would like to hear from anyone who
has ideas on modifying this program or using the
above technique to animate other programs.

Gilbert Hemmer
236 Sacramento St. #8
Auburn, Ca. 95603

Register Assignments

RO= DMA R9= Draw Subroutine

Rl= Interrupt RA.O=Control Bitc
R2= Stack RA.1=Keyboard Input
R3= Main RB.O=Left/right Count
R4= Display Page RB. l=Up/down Count

R5= Control Location RC= Variable Counter
R6é= Fuel Count RD= Laft/right Movement
R7= Unused RE= Up/down Movement

R8= Input/move Subroutine RF= Temporary Storage

QUESTDATA COSMAC CLUB

Main Program

START

Initialize
Registers

!

Display
On

Q Off

I|||||||II!::u:
NG Pressed/

Released?

jClear Screen
Draw Sfc.

Initialize
Variables

!

Point to
Spaceship Data

Draw
Subroutine
(Spaceship)

Input
Pressed/
Released?

?

Move Display
Address Up
6 Lines

HE_

pPoint To
Crash Data

(=]
Al
«
£

Subroutine
(Crash)

O

P.0O. Box 4430, Santa Clara, CA 95054

Keyboard
Input

Mask
Left Half

Subroutine

)

Point to

E.EARTM

Draw
Subroutine

(Spaceship)

Lefc/
Right Move
= 0?

Move Comtrol
Address Over
2 Spaces

Draw
Subroutine
(Man)

©

.-‘

w

Page 3

S82.1PPY
Le1ds1g d°Q

T

EETLYLY
IYBTY 93kg
AerdsTq 37TUS

T

3UN0Y
20TT 230

8821pPpY
4e1dsyg oU1

, SUTT | IUeTY 934y
umoQ ®ACK Aw1dsta 377US

{

3397 3IJTUS
1°04 39

—0

Ae1dsTq
o3u] 934Lg
®IBQ 9303

T

1°0¥ ul
aaeg *934g
Toaau0) 399

Y

eaeq
4de1dstq 38D

20N0YH
auy] 3°g

T

883.1PpY
fe1dsyq o3U]
Joxauo) peon

IUnoY)
sutq o8q

Av1ds1q ul
00 PBO]
8893IPpY dul

=

Ae1dsxq Bl

3uNo)
auy] 398

' ANILNO¥ENS
AV3A

=S¢

00 PPOT ,

ON

©

1391-3051T8
=3UB] TNSdY

o

43 91
91035 °3WNOYJ
Ty 39D

O—

SaX
0°08 ‘T |
28q su1
auT] | wmoQ ®UTT 1 d)
1013u0) 3I3TUS 10313803 33ITUS

S3x
ON
| 0 3GN0H

0°0¥ § 1§
uy aaeg

T

dn-~umog
=3UBITNE3Y

T

J¥ ui
21035 °3uno)
wmoQ 399

©

©

1 + umog
= umoq

Ae1dsTQ X9R
vy 3unoj
1903 moys

d4i

]
FA0K/10dNT

P.O. Box 4430, Santa Clara, CA 95054

QUESTDATA COSMAC CLUB

Page 4

7

Save In
RB.0O & RC.O

Set Right,
Left = 0

Shift Control

Shift Countrol

iz

Bir Left Bit Right
ES YES
[NO 0
Dec Control Inc Control
Address

|

Shift Left Shift Right
w/Caryy w/Carry
‘k____\m.____;i
Inc Dec
RC.O RC.O

Loc.
0400
0402
0404
0405
0407
0409
040A
040C
040E
0410
0411
0413
0414
0416
0417
0419
041A
041B
041D
041E
041F
0420
0421
0423
0425
0426
04628

F8
B4
F8

F8
F8
F8
F8

D3
E2
69
7A
3F
37
E4
P8

21
23

A4

RETURN

Main Program

Mnem. Comments

LDI SET UPPER
PHI REGISTERS
PHI

LpI

PHI

PHI

LDI SET DISPLAY
PHI PAGE

LDI SET INTERRUPT

PLO COUNTER

LDI SET INTERRUPT

PLO STACK

LDI SET INPUT/MOVE

PLO SUBROUTINE

LDI SET DRAW

PLO SUBROUTINE

LDI SET MAIN

PLO PROGRAM

SEP SET P

SEX SET X

INP DISPLAY ON

REQ RESET Q

BN4 WAIT FOR INPUT PRESSED
B4 WAIT FOR INP. RELEASED

SEX SET X
LDI CLEAR DISPLAY
PLO PAGE

QUESTDATA COSMAC CLUB

Loc.
0629
042B
042C
042D
042F
0431
0432
0434
0435
0436
0438
043A
043C
043E
0440
0641
0443
0444
0446

' 0447

0449
0446A
044C
044D
044E
0450
0452
0453
0454
0435
0456
0458
0459
0454

0470
0472
0473
0474
0475
0477
0478
047A
0478
047D
Q47E
0480
0482
0484
0486
0487
0488
048A
048C
048D
048F
0491
0492
0493
0494
0496
0498
0499
049A
0498
049D

Loc.
0500
0501
0502
0504
0505
0507
0508
050A
050C
050E
050F
0511
0513
0514

Code Mnem. Comment.s
F8 00 LDIL
73 STXD
84 GLO
3A 29 BNZ
F8 FF LDI DRAW LINE
A4 PLO ALONG
F8 FF LDI BOTTOM
73 STXD
84 GLO
FF F8 SMI
33 32 BDF
F8 00 LDI SET DISPLAY/CONTROL
A4 A5 PLO ADDRESSES
AE AD PLO SET UP/LEFT/DOWN
BE PHI =0
F8 04 LDI SET RIGHT MOVEMENT
BD PHI =4
F8 80 LDI SET CONTROL
AA PLO BIT
F8 20 LDI SET FUEL
A6 PLO COUNT
F8 FO LDI POINT TO SPACESHIP
AF PLO DATA
D9 SEP GO TO DRAW SUBROUTINE
3F 4E BN4 WAIT FOR INPUT PRESSED
37 50 B4 WAIT FOR INPUT RELEASE
85 GLO PUT CONTROL ADDRESS
A4 PLO INTO DISPLAY ADDRESS
E2 SEX SET X

6C INP4 READ KEYBOARD

FA OF ANI MASK LEFT HALF
BA PHI OF BYTE
D8 SEP GO TO INPUT SUBROUTINE
30 70 BR
F8 FO LDI POINT TO SPACESHIP
AF PLO DATA
D9 SEP GO TO DRAW SUBROUTINE
8P GLO GET ADDRESS VALUE
32 84 BZ BRANCH IF ZERO
04 LDN GET DISPLAY BYTE
32 96 BZ BR. NOT OCCUPIED
8B GLO GET LEFT/RIGHT MOVE.
3A 84 BNZ BRANCHE NOT ZERD
98 GHI GET UP/DOWN MOVE.
FF 02 SMI SUBTRACT 2
32 8F BZ BRANCH IF ZERO

3B 8F BNF BR. IF NEGATIVE

F8 FA LDI POINT TC CRASH
AF PLO DATA
84 GLO GET DISPLAY ADDRESS
FF 28 SMI MOVE UP 6 LINES
A4 AS PLO SAVE LOCATION
09 SEP DRAW CRASH
30 20 BR BRANCH TO RESET
15 15 INC MOVE CONTROL ADDR.
85 GLQ GET CONTROL ADDR.
A4 PLO PUT INTO DISPLAY ADDR.

D9 SEP DRAW MAN
30 20 BR BRANCH TO RESET
F8 30 LDI DELAY
BC PHI
2C DEC
9C GHI
3A 99 BNZ
30 52 BR BR. TO CONTINUE

Input/Move Subroutine

Code Mnem. Comments
D3 SEP RETURN
EF SEX SET X
F8 FF LDI POINT TO TEMP.
AF PLO MEM. STORAGE
31 29 BQ BRANCH Q ON
9A GHI GET KEYBOARD VALUE
32 22 BZ BRANCH IF ZERO
FB OF XRI CHECK IF = |
32 1A BZ IF SO, BRANCH
9A GHI GET KEYBOARD VALUE
FB 02 XRI CHECK IF = 2
32 1D BZ IF S0, BRANCH
1E INC INC UP MOVE COUNT
9E GHI GET DOWN MOVE COUNT

P.0. Box 4430, Santa Clara, CA 95054

"o

Loc.

0515
0517
0518
051A
0518
051D
051E
0520
0521
0522
0523
0525
0526
0527
0528

0529

052A
052¢
052D
052E
0s2r
0530
0531
0532
0533
0535
0536
0537
0539
0538
053C
0S3E
053F
0540
0541
0543
0545
0546
0548
0549
054A
054B
054D
054E
054F
0550
0551
0552
0553
0555
0556
0557
0559
0558
055C
055D
0SSF
0560
0561
0562
0563
0564
0566
0568
0569
056A
056C
056D
056E
056F
0570
0571
0573

Code
FF Ol

30 21
30 21

FC 01

FC 01

3A 39
30 4D
33 45

FF 08

3A 3B
30 4D

FC 08

3A 45

3A 59

3A 5B
30 00

3A 68
30 00

Mnem.
SMI
PHI
BR
INC
BR
GHI
ADI
PHI
DEC
GLO
BNZ
SEQ
STR
ouUT4
DEC
Gar
ADL
PHI
GHI
STR
GaLo
sSD
PLO
PHI
BNZ
PLO
PHI
BR
BDF
GLO
SMI
PLO
INC
GLO
BNZ
BR
GLO
ADI
PLO
DEC
GLO
BNZ
GHI
STR
GLO
SD
PLO
PLO
BNZ
PLO
PHI
BR
BDF
GLO
SHL
BNF
DEC
SHLC
PLO
INC
GLO
BNZ
BR
GLO
SHR
BNF
INC
SHRC
PLO
DEC
GLO
BNZ
BR

Comments
SUBRACT 1
AND SAVE
BRANCH
INC LEFT MOVE COUNT
BRANCH
GET RT. MOVE COUNT
ADD 1
AND SAVE
DEC FUEL COUNT
GET FUEL COUNT
BRANCH NOT ZERO
TURN Q ON
STORE FUEL COUNT
DISPLAY FUEL COUNT
DEC TEMP. MEM. LOC.
GET DOWN MOVEMENT
ADD 1 FOR GRAV.
AND SAVE
GET DOWN MDVEMENT
STORE IN TEMP. MEM.
GET UP MOVEMENT
SUBTRACT FROM DOWN
SAVE IN COUNTER
AND RESULTANT
BRANCH NOT ZERO
OR SET UP/DOWN
TO ZERO
BRANCH
BRANCH IF POSITIVE
GET CONTROL ADDRESS
MOVE UP ONE LINE
AND SAVE
INC UP COUNT
GET UP COUNT
BR. BACK IF NOT ZERO
BRANCH
GET CONTROL ADDRESS
MOVE DOWN ONE LINE
AND SAVE
DEC DOWN COUNT
GET DOWN COUNT
BR. BACK IF NOT ZERO
GET RIGHT MOVEMENT
STORE IN TEMP. MEM.
GET LEFT MOVEMENT
SUBRACT FROM RIGHT
SAVE IN COUNTER
AND RESULTANT
BRANCH NOT ZERO
OR SET LEFT/RIGHT
TO ZERO
BRANCH TO RETURN
BRANCH IF POSITIVE
GET CONTROL BYTE
SHIFT LEFT
BRANCH DF=0
DEC CONTROL ADDRESS
SHIFT LEFT W/CARRY
SAVE CONTROL BYTE
INC COUNTER
GET COUNTER
BRANCH NOT ZERO
BRANCH TO RETURN
GET CONTROL BYTE
SHIFT RIGHT
BRANCH DF = 0
INC CONTROL ADDRESS
SHIFT RT. W/CARRY
SAVE CONTROL BYTE
DEC COUNTER
GET COUNTER
BRANCH COUNT NOT ZERO
BRANCH TO RETURN

QUESTDATA COSMAC CLUB

Loc.

0580
0581

0583
0584
0586
0587
0588
0589
058A
058C
058D
058E
058F
0591
0392
0593
0595
0596
0597
0599
059A
0598
059C
059D
0598
Q59F
0540
05A2
0SA3
05A4
0545
03A6
0547
05A8
05A9
05AA
05AC
05AD
0SAF
05B0
0581
0582
05B4
0586
0588
0589

Loc.
04CE
04CF
04D0
04D1
04D2
04D3
04D4
04D6
04D7
04D9
04DA
04DC
04DD
04DE
04DF
04E0
04EL
04E2
04E3
04B4
04ES
04E6
Q4E7
O4ES8
04EA
04EC
O4EE
04F0

Page 5

Draw Subroutine

Code

D3
F8

F8
54
14
54
84
49
Ad
2c
8C
3A
83
A4
F8

04
3A
8A
BC
4F
54
9C
FE
BC
33
04
F6
54
14
04
76
54
24
30
84
FC
a4
2C
8c
3A
30
F8

30

05
AC
00

07

84

05

B6

08

96
80
00
AF
80

Code

72
70
22
78
22
52
C4

F8
4]

80
E2
E2
20
A0
E2
20
A0
E2
20
A0
3C
30
00
00
00

Cc4
C4

BO
00
AQ

Mnem.,
SEP
wI
PLO
DI
STR
INC
STR
GLO
ADI
PLO
DEC
GLO
BNZ
GLO
PLO
DI
PLO
LDN
BNZ
GLO
PHI
LDA
STR
GHI
SHL
PHI
BDF
LDN
SHR
STR
INC
LDN
SHRC
STR
DEC
BR
GLo
ADL
PLO
DEC
GLO
BNZ
BR
DI
PLO
BR

Mnem.
LDXA
RET
DEC
SAV
DEC
STR
NOP
NoP
DI
PHI
I
PLO
GLO
SEX
SEX
DEC
PLO
SEX
DEC
PLO
SEX
DEC
PLO
BN1
BR

Comments
RETURN
SET LINE
COUNT
CLEAR OLD
SPACESHIP

GET CONTROL ADDRESS
PUT INTO DISPLAY ADDR.

. SET LINE

COUNT
GET DISPLAY BYTE
BRANCH IF OCCUPIED
GET CONTROL BIT
STORE IN TEMP. COUNTER
GET DATA BYTE
STORE IN DISPLAY
GET CONTROL BIT
SHIFT LEFT
SAVE
BRANCH IF DF = |
GET DISPLAY BYTE
SHIFT RIGHT
STORE
INC DISPLAY LOCATION
GET DISPLAY BYTE
SHIFT RIGHT W/CARRY
STORE
RESET DISPLAY LOC.
BRANCH
GET DISPLAY ADDRESS
MOVE DOWN ONE
LINE
DEC LINE COUNT
GET LINE COUNT
BRANCH NOT ZERO
BRANCH TO RETURN
SET TEMP. MEM. ADDR.
TO ZERO
BRANCH TO RETURN

Display Subroutine

Comments Data
INTERRUPT osro 18 SPACESHIP
RETURN o33 31 3c
0sF2 F¥
0SF3. 24
OSP4 42
05F5 04 MAN
NOPs FOR 05F6 IF
SYNC. 05F7 04
SET DMA 0S¥8 0OA
POINTER 05F9 11
O5FA 24 CRASH
0SFB 81
INTERRUPT 05FC 24
ROUTINE 0SFD 42
OSFE 18
05FF =xx TEMP. STORAGE
BR. TO INTERRUPT

BRANCH TO RETURN
STACK AREA

P.0O. Box 4430, Santa Clara, CA 95054

Page 6

Q-BUG

In a previous column, we added some new
commands and shortened some other command names.
Four of the shortened commands require a letter
designator after the command word to establish
the physical means of data input or output.
These commands are:

LOAD (X) X = Required letter designator

SAVE (X) C = Cassette 1/O
D/L (X) F = Floppy Disk 1/O
D/S (X) S = Stringy Floppy /O

if you are not fortunate enough to have a
Stringy Floppy and/or Floppy Disk 1/O device
interfaced to youw computer, how would you like
to eliminate the typing of the letter designa-
tor? |If you use only a cassette for data 1/O,
the use of a letter designator is redundant and
a simple fix will do away with it.

First, a little background on what Super
does when you type commands such as "LOAD C". In
processing an inputted command, Super puts the
command, byte by byte, into the line buffer area
on wark page 3500. The buffer area is location
3500 thru 355F. Thus, "LOAD C", in the direct
execution mode, would appear in the line buffer
as:

Location Code

3500 4C (L)
351 4F (O)
3502 41 (A)
3503 44 (D)
3504 20 (Space)
3505 43 (C)

3506 oD (c/r)

Super will then "read" the command word in
the line buffer and search the command table for
a matching word. If Super finds a match, it will
Mstuff' the token for the command into the first
position in the intermediate line buffer area at
location 35D0 on work page 3500.. Super then
examines the byte following the command word in
the line buffer. In our illustration, this is a
space (20) and Super will ignore this space.
(This is one way OUR Basic saves space in memo-
ry. The TRS 80 and some other Basics write ALL
spaces into ther program memory.)

Super examines the next byte in the line
buffer (43) and determines its acceptability as
a valid ASCIl letter. Since "43" is the ASCII
letter "C", Super assigns a prefix designator of
"D1" to the "43" and stuffs both bytes into the
next positions in the intermediate line buffer.

QUESTDATA COSMAC CLUB

"LOAD C" will now appear in the interme-
diate line buffer as:

Location Code
35D0 98 (Token for LOAD)
35D1 D1 (Letter prefix)
35D2 43 (C)
35D3 oD (c/r)

After Super has loaded the command to the
intermediate line buffer, it then examines the
intermediate line buffer to determine what it
should do. The first byte (token 98) "points®
Super to the execution table location 0730, At
this location, Super picks up the address of the
actual "LOAD" machine language routine, which is
OE00, and goes to that location to perform the
LOAD routine.

In all of the LOAD, SAVE, D/L, or D/S,
routines, Super uses a subroutine at location
14FE to test for the presence of the "D1" after
the token in the intermediate line buffer. If
Super finds the "D1", it examines the the next
byte. Depending on the letter found, Super will
stuff either 32 06" (for C) or "F8 06" (for F
or S) into locations 35A0 and 35A1 on wark page
3500. These locations are the statement call
address to which Super will branch later on in
the LOAD or SAVE routines.

If Super does not find a D1 after the token
in the intermediate line buffer, it will return
an error mesage (#60). When LOAD is typed wit—
hout the letter designator, the intermediate
line buffer will look like this:

35D0 98
35D1 0D

To keep Super from returning an error mes—
sage if we do not use a letter designator, we
must bypass the test for the D1 in the subrou-
tine at location 14FE.

This is the present routine at location
14F E with my homemade comments:

Location Code Comment

14FE 4B Get byte AFTER token byte at
300

14FF FB D1 Test for "D1" if yes, D will =0

1501 32 07 If D =0, branch to 1507

1503 D4 09 FF Error routine - do if D <> 0O
1506 3C Garbage byte - leftover assem—

P.O. Box 4430, Santa Ciara, CA 95054

©0E0)

-

bler label?

1507 BA Put D (00) in register BA.1

1508 4B Get next byte at location 35D2

1509 FB 43 Test for "C" if yes, Dwiil =0

1508 3A 15 If not "C" branch to 1515

150D FBE1 Put E1 inD

150F AA Put D in register BAO ~ BA =
00E1

1510 0A Get byte at location 00E1 -
should be "32"

151 DD 20 Put "32" in location 35A0 (3580

: _ + 20)

1513 30 2B Branch to 1528

1515 FB OS5 Test for "F" (43 XOR 5 = 46(F))

1517 3A 21 If not "F" branch to 1521

1519 F8 E2 Put E2 inD

151B AA Put D in register BAO - BA now
= 00E2

151C 0A Get byte at location O0E2 (F8)

151D [20 Put "F8" in location 35A0

151F 308 Branch to 1528

1521 FB 15 Test for "S" (46 XR 15 = 53(S))

1523 3A 03 if not S branch back to 1503
(error)

1525 F8 E3 Put E3 inD

1527 AA Put D in register BAQ - BA now
= 00E3

1528 QA Get byte at location OOE3 (F8)

1529 D 20 Put in location 35A0 '

1528 F8 06 Put 06 inD

1520 [21 Put 06 in location 35A1 (If
letter designator was "C", lo-
cations 359F thru 35A2 will now
read "D4 32 06 D5". If "F" or
"Sh, it would read "D4 F8 06
D5". Location 359F thru 35A2 is
the call to the actual LOAD or
SAVE routines. Location 3206 is
the cassette 1/O routines.)

152F AF Also put 06 in register RF.0

1530 0A Get byte at location OOE1 for
"C" or location O0E2 for "F" or
location OOE3 for "S

1531 BF Put byte in register BF.1 - 32
for C or F8 for F or S

1532 oF Get byte at location pointed to
by register BF ~ 3206 for C,
F806 for F or S

1533 B Test for CO - location 3206

DOES contain CO - location F806
may or may not contain CO
1535 CAOC Q If the byte is not CO, an error
message "N/A" will be printed
1538 D5 Retwn to calling location
To bypass the part of this routine that
checks for the D1 and letter is simply a matter

of changing the first five byte at location 14FE
to:

14FE F800BA 300D

QUESTDATA COSMAC CLUB

Page 7

Now, Super will immediately stuff "32 06"
into the call location and go right to work
LOADing or SAVEing,.

One word of caution, however, is in order.
If you are running a program that was written
WITH a letter designator, Super will treat this
as an error and abort the program AFTER the D/L

or D/S It will perform the Data Save or Data
Load correctly.

My advice is to review any programs that
have DSAVE, D/S, DLOAD, or D/L, and remove the
letter designator. One final change! Let's put a
shorthand command for LOAD or SAVE in the com-
mand table. Make the following changes:

Location Code

O6EE 63
O6EF 4C
06FO0 CcC
06F1 98
06F 2 63
06F 3 53
06F4 D3
O6F 5 97

Now, LOAD or LL will load a cassette, SAVE
or SS will dump to a cassette.

Finally, make a new master Super program
tape.

Keep a permanent record of the original
routine at location 14FE. Should you ever wish
to interface a Stringy Floppy or Floppy Disk,
you will probably have to restore the routine to
its original state.

Now, for ELF 1l owners, let's shrink the
serial version of Super to a promable length of
12 1/4 K.

In a previous column, we eliminated the
need for part of the initialization routines at
location 1800 thru 183F and 3493 thru 34CC. We
will now use these areas for the extra patch
routines required by the ELF il Video Board.
(Page 71 in the Super manual)

The first patch shown on page 71 is:

3300: CO 34 93

This is the terminal timing routine which
we previously eliminated by putting "CO 31 48"
at location 3300. This change will remain as is
but will go in a different location.

The second patch on page 71 is:

3303: CO 34 F3

P.O. Box 4430, Santa Clara, CA 95054

Page 8

This is the Break routine at location 34F3,
We will put this routine on page 3300 but at a
different location, also.

The next patch is:

3306: CO0 33 1C

This is a branch to an ELF 1l required
output patch routine at location 331C as de-
tailed on page 71 of the manual. This routine is
performed BEFORE the output routine at location
3406. We will put this patch routine into the
free area at location 1800 as follows:

1800: BF 12 12 12 02 FB OF 3A
1808: 2B 72 A6 02 B6 F D5 22
1810: 22 22 9F 73 [D B FF 41
1818: 3B 3D D4 F F9 F8 01 DD
1820: 1B 12 02 D4 34 06 D5

Change the branches at locations 1807 and
1818 and the subroutine call at location 1823 as
follows:

1807: 3A OF
1818: 3B 21
1823: D43316 D5

At location 3306, change the long branch
to:

3306: CO 18 00
The last patch on page 71 is:

3309: D4 34 09
330C: D4 2E 3B (etc)

This is an input patch routine. The routine
from location 330C thru 331B is performed AFTER
the input routine at location 3409,

We will start this patch routine by putting
a long branch to the remaining free area at
location 1827 as follows:

3309: CO0 18 27

. Starting at location 1827, insert the fol-
lowing:

1827: D433 19D4 22 373D B
1830: FF 40 3B 37 D4 2F F9 12
1838: 02D5C4CAC4CACACA

This is the patch originally shown on page
71 for location 3309 thru 331B. | have already
corrected the branches for you. The f{ine length
is set for 64 characters on the CRT screen so if
you use a different length, make the appropiate
changes to the bytes at locations 1817 and 1831,

Now, change location 3300 thru 3305 to:

3300: CC 33 OC CO 33 10

QUESTDATA COSMAC CLUB

Put the CLS branch at 330C:
330C: D4 3148D5
Put the Break routine at location 3310:

3310: 3F 14 FF 00 DS

This finishes the relocation of the ELF I
patches. Now, we must move the actual input,
output, and delay routines, from page 3400 to
page 3300. First, block move the input/output
routine from location 3406 thru 3492 to loca-
tion 3316 thru 33A2, When this is done, make the
following branch changes:

3317: 63
331A: 35
3339: 38
333E: 40
3347: 4D
334C: 53
3350: 52
3357: 44
335F: 35
3362: 98
3369: 6D
3380: 83
3388: 7F
3390: 95
3394: 72

Next, block move the delay routine from
location 34CD thru 34F2 to location 33A3 thru
33C8. Make the following branch changes:

33A9: A6
33AF: AC
33B4: C2
33BC: B9
33C1: B3
33C6: A3
33C8: AA

You might find, as | did, that this shif-
ting of routines somehow messes up the terminal
timing and you get a double echo of the typed
character on your CRT. In my case, | simply
changed the time constants on work page 0000 at
locations OOE7 and OOE8 They changed from "80
55" to "00 55". This cleared up my problem but
you may have to experiment with different values.

Now, if everything is working to youwr satisfac—
tion, make a new master Super program tape.

P.O. Box 4430, Santa Clara, CA 95054

LINE by

LINE

This simple Assembler supports the development
of machine written programs by translating mne-
monic code into hexadecimal machine code. The
length of this program is about 4.75k bytes,
including string and array areas. The assembler
is software protected, so any try to write out
of the allocated Ram space will result in an
error message and break.

by

Werner Cirsovius

NOTE:The available Ram for machine code is above
the Basic program. To use the hole created
by the 'DEFUS' statement, a short program
for moving data into the hole must be writ—
ten by the user.

This assembler supports:
-all standard RCA mnemonics
-two Standard Call and Return Technique mne-
monics
~three pseudo opcodes

—-decimal, hexadecimal and character operands
, (but no labels)
—-multiple mnemonics per line separated by a
blank
OPERANDS

Operands may be decimal, hexadecimal or charac-
ters. If the pseudo opcode DC' (Define constant)
is used, string operands are legal, too. While
decimal operands need no prefix, the hexadecimal
operands use the hash sign (#) and the charac-
ters/strings the dollar ($) sign.

Exarples: 10 Decimal 10
#10 Hex 10 (Decimal 16)
$A Character 'A' (Hex 41, decimal 65)

MNEMONICS

All available mnemonics are stored in a data
field (Lines 2000-2990). Each mnemonic uses
three data statements:

-Statement 1 : Mnemonic string

-Statement 2 : Line for executing the type
of mnemonic

—Statement 3 : Hexadecimal Opcode

The last statement in the data list is the
asterisk (*), indicating the end of the list. If
the asterisk is found, the assembler prints:

QUESTDATA COSMAC CLUB

Page 9

ASSEMBLER

TUNKNOWMN MNBVIONIEC!

Description of the various modes.

MXE 1: Opcode with no operand (Line 300)
Format : /Mhemonic/

Examples: IDL NOP

Code generated: 00 ()
MXE 2: Opcode with Register operand (Line 200)

Format : /Mnemonic//(Prefix) Operand/With

operand in range 0.15 (decimal) or

0..F (hex)
SEX 2

Examples: SEP #A

Code generated: E2 DA
MOXE 3: Opcode with immediate operand (1 ine 400)

Format : /Mhemonic/ /(Prefix) Operand/
With operand in range 0...255
DI 16 ADI #E

Examples: (Rl $0

Code generated: F8 10 FC FE F9 30
MIE 4 : Opcode with 8 bit pointer (Branches)

(Line 600)

Format : /Mnemonic/ [Operand/The operand is
always in hex notation and needs no
prefix

BR 10

Examples: B\ DO BE 0

Code generated: 30 10 ¥DO 3300
MIE 5 : Opcode with 16 bit address (Long Branches)

(Line 700)

Foramat : /Mnemonic/ /[Operand/ The operand is
always in hex notation as in mode 4
LBR 13

Exarples: LBNF FOOO

Code generated: 0013 @BFOO

P.O. Box 4430, Santa Clara, CA 95054

Page 10

MICE 6 : Opcode with §/O operand (Line 500)

Format : /Mhemonic//(Prefix) Operand/
With operand in range 1..7

Examples: arr 4 INP #

Code generated: 64 6F

MXE 7 : Pseudo opcode 'ORG'Y, set origin (Line
800)

Format : ORG /Operand/
With operand always in hex notation

Examples: CRG 100 CRG F00O

Sets PC to : 0100 FO00

MOCE 8 : Pseudo opcode 'END'!, end of assembler
(Line 900)

Format : END, prints the message!END ON XXXX!
and enters Basic

MIE 9 : Pseudo opcode 'DC' , define constant
{Line 1900)

Format : DC /(Prefic) Operand/

If the operand is decimal (no pre—
fix) and hexadecimal (prefix #), the
numbers must be in the range
0..65535 (0000.FFFF). If the oper-
and is less than 256, only 8 bits
will be set up as constant, other-
wise 16 bits are used. If the oper-
and is a string (prefix $) up to 32
characters in that string are legal.

Exarpls: DC 200 DC #10 DC 256 DC #1000 DC $ ABC

Constant
generated: C8 10 0100 100020 41 42 43

ERRCR MESSAGES

Whenever an error is detected, the assemblier
prints an error message followed by the mnemonic
line with a question mark behind the error
string portion.

TUNKNOAMN MNBMONIC ERROR'! If a mnemonic is not
found in the list

'MISS ING OPERAND ERR(R! if the assembler
finds no operand

'0PQODE ERRCR! If the mnemonic '".DN
0' is found (Genera-
ting code 00 which is
used for mnemonic
l"]_l)

TOPERAND ERR(R! If the register or

1/O operands are out
of range

QUESTDATA COSMAC CLUB

ISTRING ERR(R! if there are more
than 32 characters in
the string of a 'DC'
opcode

TERR(R! If an error in the
operand field s
detected. That is
~-if a (hexa)}decimal
number is out of

range
-if a digit is not
0.9 or A.F

TADDRESS VICLAT ICN! If the memory address
is within the
protected area. The
assembier responds
with 'ORG ' and
enters the 'ORG!
sequence

if no more memory is
available. This mes—
sage results in an

end of the assembler

'MEMRY FULL!

MBMCRY SPACE

As found in the Super Basic manuals, the follow—
ing pages are stored in the workspace (Note that
in the listing this is page 01, see lines 20 and
50, it will be page 2F in V3.0 and page 35 in
V5.0).

XxX99 Page for end of string variables
XEB Stack page

These pages will be loaded and referred to as
star t-and-end-address.

Assume end of string variables is page '31' and
the stack page '4F'.

The assembier prints at the beginning:

'F IRST ADDRESS AVAILABLE 3300'
' LAST ALDRESS AVAILABLE 4DFF!

To be sure no dynamic assignment of memory areas
will crash the program, there are some free
pages .

TABLE (F VARIABLES

A Holds first available memory address

B Length of hex string (2 for byte, 4 for
16 bits)

C End flag of substring (1 if no end, O
if end of string)

D Length of decimal string (3 for byte, 5
for 16 bits)

E Holds last available memory address

F Range flag (0 if character 0.9,A.F, 1
otherwise)

H Work variable

P.O. Box 4430, Santa Clara, CA 95054

©0E0)

1] For .. Next loop variables

L Length of substring or executing mode
line number

M Current memory address

N Current string pointer for line string

o) Opcode and operand counter

T Work variable holds divisor for hex
printing (Line 1200)

U String pointer for string in 'DC'
opcode

\% Nibble counter (2 if 8 bits, 4 if 16
bits)

X Operand

Y,Z Work variables

C($) Substring, holding mnemonic or operand

H($) Mhamonic fran data list

O($) Constant text for error routine

T($) Mnemonic and operand input string

X($) Token string (Holds prefix # or $)

Array for opcode/operand/constant

SAMPLEPROGRAM

In some applications it's useful to work with
the Gray-code. To work with Gray-coded informa-
tion, a converter must be used.

The conversion of Binary to Gray is easy:
—-Load Accu with binary word

-Shift accu right one bit
—-Exor accu with original binary word
~Store content of accu as Gray code

The conversion of Gray code to Binary is
similar, but uses the above routine M-times,
where M depends on the number of bits (N) in the
following way:
N < 2% 2%

The assembler program consists of two parts:
(Note the start address of hex '1600!, this may
differ from normal Super Basic versions)

: 1600-1613 Calculate the number of loops
(M) depending on the number
of bits (N) in Lo register 8.
The calculation starts
with x=1,2%=2, If the compar—
ision N-2* is less or equal
0, the result is 2% 1

Part 1

Part 2 : 1620-1626 Perform
the conversion (One loop)

Registers used : Reg 2 as stack pointer
Reg 8 as parameter register

The end of both parts is a SEP 5 (RTS) instruc—
tion.

QUESTDATA COSMAC CLUB

SAMFLE RUN OF ASSEMBLER

(SUBROUTINES FOR GRAY CODE CONVERSION)

FIRST ADDRESS AVAILABLE 91600
LAST ADDRESS AVAILABLE 32DFF
ENTER MNEMONIC

1600:L.DI 2 STR 2 GLO 8 SM
1600 F8 02

1602 52

1603 88

1604 F7

1603:BL OE BZ OE LDN 2 SHL STR 2 ER 03
160% 3B OE

1607 22 COE

1609 02

160A FE

1608 52

160C 30 03

160E:LDN 2 SMI 1 PLO 8 RTS
160E 02

160F FF 01

1611 A8

1612 DS

Page 11

1613:0RG 1620 GLO B STR 2 SHR XOR PLO B RTS

1620 88
1621 52
1622 Fé&
1627 F3
1624 A8
1625 DS
1626:END

SAVPLE PROGRAM IN BASIC

This short program is the main program for the
conversion of Gray code to Binary code and vice
versa.

After initialization, the program asks for the
mode. The user may select one of the four avail-
able modes with the following keys:

B Define number of bits to be converted.
Basic calls the routine part 1 {Line 30)
and prints:

'N BITS NEED M RUNS!

G Convert Gray to Binary
D Convert Binary to Gray

Both conversion modes print after execution:

CONVERTED FROM X TO Y!
E End of program

DEFINT Z
INPUT "BITS TO BE CONVERTED" B
M=USR (21600, B, 0)

PRINT B;" BITS NEED " ;M;" RUNS"

INPUT “"MODE" Ms

IF MIDs(Ms,1,1)="G" GOTO 110
IF MIDS(Ms$,1,1)="D" BOTO 1220
IF MID$ (M$,1,1)="B" GOTO 20
IF MIDs(Ms,1,1)="E" BOTO 200
GOTO 30

L=M: GOTO 130

L=1

INPUT “WORD" WiH=W

FOR I=1 TO L:W=USR(21620,W,0): NEXT
PRINT ©“CONVERTED FROM " ;H;" TO * ;W
GOTO ZO

DEFINT

P.0. Box 4430, Santa Clara, CA 95054

Page 12

QUESTDATA
P.0. Box 4430
Santa Clara, CA 95054

are
ted
in
or
1802

Messinger
Pitkin
Larimer
is gran
en used
QUESTDATA welcomes
Manuscripts
ied by a selt
Articles
wishes otherwise,
rate of $15 per published

readers,

John
about the RCA

this publication
Permission

0Ze 0109 :f=
oSy 0102 Z=

-1
ssecessssesseensel " 0d Hannan

Read i NQeeesersssrareas JUdy

not be reproduced without

envelope,

its

of

from
I't be returned only when accompan

addressed

1 ONeeacocnnsssscnces

stamped

at the
information

is
QUESTDATA exists for the purpose of

Publ I Sher ueeseecensesQuest Electronics
ging

The contents

copyright and shall

-
.
.
.
-
0
+
hel
w

Product

wi
programs submitted will appear with the authors

name unless the contributor

Payment

to quote short sections of articles wh
page.

reviews of this publication,

permission of QUESTDATA,
contributions

microcomputer,

exchan

08 0109 3 ININd 0501

LX3N *8(TI°$L)8aIi LNIMA (SLIN3T OL N=I MO4 OtOl

OS0T 0L09 ($LINIT=N 41 .5, LININ4 O£OT

AX3AN FE(TFIsL)$aIW INIMA 21-N OL I=1 N04 OZOT

INIMA :,.HOMNI . LNIN¥4 0001

£L.ONUNIL0 ONISSIK. INIMA 666

EXNIVANYH HONYISE WIH Boe

AN3 0%6

INI43Q 026

ANIYA 200ZT ANSOS $5.@ NO GN3I. INING 2 INIYY 2 INIMdA @ INIMNG OT6
EEANIEX W3IH 006

0BE 0409 :xX=W3i:0ZrT1 NS08 0011 ANSA9 :v=A 078

&66 0109 0=0 41 018

KENISINOKKE W3N 008
IL=0:98ZK(Z)0-X=(SI09CT/X=(2)0 GSL
g 41 02yl dNs09 001l ansog oSl
664 0109 0=2 II OZL

v=d 01/

SXHINUNE ONOIRX W3H 00Z

OZL 0109 T=d 019

- KXHONUNEEE W3M GOS
00T 0L09 3e0 INIMd 053

OvZ 0109 8>X Al Ovs

0SS 0L0S O=X A1 :Q0ST 8Nsng 0Ig

666 0109 0O=3 31 015

¥%x3003 O/1%%x W34 00F

0ZI 0109 T=0:X=(2)0 0ot

0Lt ANS39 ot

666 0L0H 0=3 31 Ol¢

KXANYNIA0 JADIAANWIXX WIY OO

0B 0109 06T

0& 0109 043D 41 OBL

INIMd 2 1X3N H=W 09%

f. W INIM4 :90CT ANS09 (1)0=W GEI
T+W=HI (D 0‘W 304 0 OL T=I ¥Od4 Ob%

fa W INIMS 0021 ANS0Y 958

0SS 0109 T+3<0+W d4I 55T

0Z6 01089 31,7704 AMOWIW. INIMA IW 31 088

0Z8 OL09 3T=NI$l.C 940, IN4NI :.NOILYI0IA SS3INAAY. LININd YiW 31 0OZ

£

1=0 50%

KXONYN340 ON%x W3IN 00%

0001 0109 :4,300340. INIM4 O=(130 41 IX+(1)0=(1)0 OtT
0001 0109 :is0 INIMd ST<X dJI fCQOLT 8NS09 OcZ

3¥0183Y 20011 3NS09

1=N:$l.ts LOANI 100ZT ANS09

xx3007 NIYWEE W3

U=l INIMd .JINOW3NW H3INI. LINIMd
ININME 100Z1 8NS09 ::$23f,.1SY7 » LININdD
I=WIT-9CTR (1-(AF10E) #33d) =3

INIMG 2QOZT 8NS09 :i¢D%.1SHTd. ININd
«& 3TEYIIYAY SSIANAAY =93

U= IFSTK (H+ (66 10€) ¥I3d) =v

Z=H

+ONUH340. =30

INTMd 3 INIMJ 36§70 (290 WlQ $Z INIS3Q

BITS TO BE CONVERTED?B

8 BITS NEED 7 RUNS

MODE?H
BITS TO BE CONVERTED?4

4 BITS NEED 3 RUNS

MODE?G
BITS TO BE CONVERTED?S

8 BITS NEED 7 RUNS

MODE?G
CONVERTED FROM 71 TO 100

CONVERTED FROM 100 TO 71
MODEE

CONVERTED FROM 4 TO &
MODE?D

WORD?6

CONVERTED FROM & TO 4
MODE?D

WORD?4

MODE?H

WORD?100

WORD?71

&4&6 0109 0=0 4I OlZ

FXANDHIL0 HILSIDIURE WIH 00

Q0T 0109 021

71 0109 $3=sH d4I 1 (1YD°7 av3y 011

07 0L08 P JINOW3NW NMONHNM, INIMd W k.=$H JT S$H qQu3ad 00T

32
08
=74
(e 74
0
05

Oov

‘o

0z
&1
51

o1

18 3INNCL'SNIAQSHIT'M AB W3N £
2081 403 JYWS0I 3HL H¥O0d W3H 9
MITEWIASSY INIT A8 INIT K3IY 5

P.O. Box 4430, Santa Clara, CA 95054

QUESTDATA COSMAC CLUB

rl.!l.'

Page 13

1100 REM 32GET SUBSTRINGESR

1110 FOR I=N TO LEN(TS) -

1120 IF MIDS(TS,I,1)=" " EXIT 1150

1130 NEXT :C=0

1140 C$=MIDS(T$,N, I-N~C) :N=I: RETURN

1150 C=1:1=1+1: GOTO 1140

200 REM SSPRINT HEXX$

1205 V=4: GOTOD 1210

1206 Va2

1210 X=M:T=16“(V-1): FOR J=1 TO V

1220 Y=X/TsZmY: IF Z792=1+7

1230 PRINT CHRS$ (Z+648);:X=X-YXT:T=T/16: NEXT : RETURN

1300 REM $3GET OPERANDS®

1305 D=3:B=2

1310 GOSUB 1100:X$=MIDS(CS$,1,1):L=LEN(CS)

1320 IF X$="#" GOTO 1410

1330 IF Xe="$" GOTO 1490

REM XxDECIMALXX
b IF LD EXIT 1000

1350 X=0: FOR I=1 TO L

1760 D=ASC(MIDS$(CS,1,1)): GOSUE 1670

370 IF F=1 EXIT 139%

1380 X=X¥10+D-48: NEXT : RETURN

1795 EXIT 1000

1300 REM $XHEX XX 2090 DATA "AND", 300, #F2, "ANI", 400, #¥FA, "SHRC", 300, #76, "SHR" , 300, #F 6
1410 Ce=MID$(CS$,2,LEN(CS)) 2100 DATA "SHLC",300,#7E, "SHL", 300, #FE, "ADD", 300, #F4, "AD1 ", 400, #FC
1420 L=LEN(C$): IF LB EXIT 1000 2110 DATA "ADCI",4C0,#7C, "ADC",300,#74,"SDBI1",400, #7D, “SDE", T00, #75
1470 X=0: FOR I=1 TO L 2120 DATA "SDI1",400,%FD, "SD", 300, #F%S, "SMEI", 400, #7F, “SME", 300, #77
1440 D=ASC (MID$(C$,1,1)): GOSUE 1600 21320 DATA "SMI", 400, #FF, “SM", 300, #F7, "BR", 600, #30, "NBR", 300, #38
1450 IF F=1 EXIT 139% 2140 DATA "BI",&00,#32, "BNZ", 400, #3A, "BDF ", 600, #33, "BNF", 600, #7B
1460 IF D>S7D=D-7 2150 DATA "BPZ",&00,#33, "BGE", 600, #33, "BM", 600, #3B, "BL", 600, #3E
1470 X=X%16+D-48: NEXT : RETURN 2160 DATA "BQ", 500, #31, "BNQ", 400, #39, "B1", 400, #34, "BN1", 600, #3C
1490 REM ¥¥CHARACTEREX 2170 DATA “B2",600,#35, "BN2", 600, #3D, "B3", 600, #34, "BN3", 600, #3E
1500 X=ASC(MID$ (C$,2,1)): RETURN 2180 DATA "B4",600,#%7,"BNa", 500, #3F, "LER", 700, #C0, “NLBR", 300, #C8
16060 REM $8RANGE TEST®S 2190 DATA "LE2",700,#C2Z, "LBNZ",700,#CA, "LBDF", 700, #C3, "LENF ", 700, #CH
1605 F=0: IF D 70F=1 2200 DATA “LBQ",700,#C1, "LBNQ",700,#C%, "SKP", 300, #38, "LSKF", 300, 4C8
1610 IF D<&S IF D>S7F=1 2210 DATA "LSZ",300,#CE, "LENZ", 300, #C6, “LSDF ", T0O0, #CF, "LSNF ", 300, #C7
1620 GOTQ 1650 2220 DATA "LSQ@", 300, #CD, "LSNR", 200, #CS, "LSIE", Z00, #CC, "OUT", S0G, #60
1630 Fad: IF DrS7F=1 2230 DATA "INF", 500, #68

1650 IF D<48F=1 2240 DATA “CALL", 700, #D4, "RTS",300,#D5

1660 RETURN 2970 DATA "x"

1900 REM XCONSTANTRX
1910 IF C=0 GATO 999

1915 O=LEN({T$)-N:U=N: IF 0=0 GOTO 1925

1920 GOSUE 11001 X$=MID$ (C$,1,1):L=LEN(C$): IF L>0 GOTO 1930

1925 FRINT “CONSTANT":: GOTO 1000

1930 IF X$="#"E=4: GOSUB 1410: GOTO 1940

1940 IF X$="$" GOTO 1980

1950 D=%: GOSUB 1340

1960 IF X<2560=1:10(1)=X: GOTO 320

1970 0=2:0(1)=X/256:0(2)=X~0(1) $2%56: GOTO 320

1980 IF 0332 FRINT “STRING";: GOTO 1000

1990 FOR I=1 TO 0:0(I)=ASC(MID$ (T$,U+I,1)): NEXT :C=0: GOTO 320
2000 REM XSMNEMONIC DATAKE

2010 DATA “1IDL", 300, #00, "NOP", 300, 4C4, “SEP", 200, #D0, "SEX", 200, #EO
2020 DATA "SEQ",T00,#78, "REQ", 300, #74, "SAV", 300, #78, "MARK", 300, #79
2030 DATA "RET",300,#70,"DIS",300,#71, "LDN", 200, #00, "LDA", 200, #40
2040 DATA “ORG",800,0, "END",900,0, "DC", 1900, 0

2050 DATA "LDXA",300,#72,“LDX",300,#F0, "LDI1", 400, #FB, "STR", 200, #50
2060 DATA "STXD",300,#73, "INC",200,#10, "DEC", 200, #20, " IRX", 300, #60
2070 DATA “GLO", 200, #80, "PLO", 200, #A0, "GHI ", 200, #90, "FHI", 200, #BO
2680 DATA "ORI", 400, #F9, "OR", 300, #F 1, "XOR", 300, #F3, "XRI", 400, 4FE

[JRenewal [JNew Subscription

l - . - . B
) QUESTDATA A 12 iesue subseription to QUESTDATA, the publication devoted i
! P.O. Box 4430 entirely to the COSMAC JBOZZZ'L? 812. ini I
! 054 (Add $6.00 for airmail postage to a oreign countries |
| Santa Clara, CA 93 except Canada and Mexico add $2.00) I
| Your comments are always welcome and appreciated. We want to |
j Payment be your 1802's best friend. I
i D Check or Money Order Enclosed '
| Made payable to Quest Electronics NAME i
I [0 Master Charge No :
: O Visa Card No. ADDRESS N
i Expiration Date: {
! i
! "1} LA !
| Signature e 35¢ Iﬁ CITY STATE 1P |
| dow ewiitvi I
I
l :
1
|

.

Page 14 E'" '3 R" TEST
by
Gary Gehlhoff
Occasionally | have felt that my ELF System ADDR CODE COMMENT
was dropping a bit in memory somewhere along the 0010 90 R(0) 1 ==> D
line. To provide an initial check the following 0011 Bl B2 B3 D - Ri1,2,3).1
hor 0014 F8 50 Al 50 --> R(1).0 .0050 Start Test
short program was written. 0017 F8 4F A2 4F --> R(2).0
O01A F8 08 A3 08 --> R(3).0
The "Memory Test" program puts the hexade- 001D E1 X =1
cimal value FF into each memory location with 001E F8 FF FF --> D
each bit then being shifted into the DF regis- 0020 51 D ~—> MR
ter. DF is then tested for zero if a zero 0021 FO MIRGO) == D
g 4 . 0022 6 Shift Right --> DF
occurs in DF, control is transferred to an error 0023 51 D —-> (M(R(1)))
display (See Below). When all the bits of each 0024 3B 42 If DF=0 Go To 42 Error Display
memory location have been tested via DF, each 0026 23 R(3)-1
memory location is then tested for zero. If all 0027 83 R(3).0 -->D
locations function properly, the Q L.E.D. will 88%? 13? 21 ,{I,?; 0
come on and the beginning address of the test 0028 91 R(1)e1 ==> D :
will be displayed on the hex display.‘ 002C FF 10 D - 10 -=> D High Ending Byte
. 002E 3A 1A If D=0 Goto 1A
If an error is found during testing, the Q 0030 8t R(1).0 ==> D
L.E.D. will remain off while the high address of 0031 FF 00 D - 00 —=> D Low Ending Byte
the memory location will be displayed on the hex 0033 3A 1A It D=0 Goto 1A
display. _ Depressing and releasing the Input 88;2 gg) . ﬁfé&b > D
IButto_n will show the low address of the memory 0037 3A 42 If D # 0 Goto 42 Error Display
ocation on the hex display. 0039 91 R(1).1 —> D
003A 3A 35 I1f D# 0 Goto 35
Slight modifications to OP Codes in locat— 003C 81 R(1).0 =->D
ions 0015, 002D, and 0032 will allow any section 003D FF 50 D -50-=>D
of mem X 003F 3A 35 If D # 0 Goto 35 .
) ory to be tested 0041 78 0 on
I 0042 91 R(1)e1 ==> D
It's interesting to note that there are 256 0043 E2 X =2
to the 256 power (which is beyond the range of 0044 52 D -=> M(R(2)) 4
any standard scientific calculator) possible bit 0045 64 M(R(X)) ==> Hex Disptay R(X)+1
combinations in one page of memory. Processing 0046 22 R{X)-1 win
those combinations at the rate of 4,000,000 sec. 882; g; j; w::: ;g: "||" g:?:::gd
(EIf clock frequency) would take %2 EE 62 years 0048 81 R(1).0 =-=> D
for your EIf to complete the task. 004C 52 D --> M (R(2))
004D 64 M(R(X) ==> Hex R(X)+1
004E 00 Stop.
O04F - Stack Location

COSMAC CLUB COSMAC CLUB CGSMAC CLUB COR@ACLLUB COSMAC CLUB COSMAC

' QUESTDATA -
; P.O. Box 4430

Santa Clara, CA 95054

