vertdata

©

Volume 3 lssue # 1

12-PAGE MOVIES

by

Don Lioyd

Taking Jack Krammer's hint in "New Improved
Target Game with jumping Man" (Questdata Vol. 1
Issue 9), | started building this combination
draw-and-animate program for the 4K Super EIf.
A blinking cursor can be made to write or erase;
the user then chooses from a set of options
including: move cursor one bit in any direction,
change address, change page, save page, patch to
user subroutine(s), and show movie. Once you've
used the option codes a few times interaction
with this program becomes quite fast.

The DMA address is Page 03, and saved pages
are 04 through OF. One note on terminology: to
avoid double use of terms, 1 will refer to the
seven—segment hex readout as the 'display' and
to the image on the video monitor as the
screen'. The paragraphs below are keyed both
to the function diagram and to sections of the
fisting.

l. One-page video interrupt routine.

Il. As soon as you press and release 'R' and
'G', the Q LED comes on and you input youw
choice of background: '00' for black, 'FF!
for white (reverse video) or any other
entry for patterned background for your
drawings.

This style of writing an input:

ADDR axe :
00 3F 00 6C 64 22
05 37 02

allows you to double check the entry as you
are making it by holding the W' key down,
a handy feature especially if the input is
about to become a program counter as it
often does in this program. Because the
input is for immediate use and need not be
saved on the stack beyond the next input,
the X register is decremented right away.

Il. Q prompts for a second input: '62'

1V,

vl

vi.

to go

to the animation program, or 'AA' to go to

the drawing program.

Animation program. Q prompts for two in-
puts: the first is the number of the last
page to be screened as a loop, and- the
second is rate at which successive pages
are to be brought to the screen. Try OA to
start with. Each of the save pages are
brought (loaded) to the screen in turn,

held while the delay timer i counted down,
then replaced by the next page; when the
limit is reached, the first save page is
brought back and the process is repeated
until 'I' is pressed whereupon program
returns to (ll1). Page numbers are dis-
played during animation.

Entry to drawing program. Q prompts for a
page number and first time through enter
'04%; this will initialize the save area to
start saving at the beginning. Subsequent
returns to this subroutine bypass the init—
ializations and allow you to call up any
page for editing.

This is the heart of the drawing program.
The cursor (first time through) is located
near the center of the page. Subsequent
times through this subroutine the cursor
will be located wherever you left it. To
write using black background, press 'I!
while the blinker is on; to erase, press
"' while the blinker is off (for reverse
video, white background, do the opposite)
and DO NOT YET RELEASE: input your sub-

routine option before releasing 'lI'. The
reason for having a single input routine
for both write/erase and where to? is to

allow repeated calls to the same subroutine
with single 'I' strokes. For example,
entering '20' will move the cursor up one
space; since you don't need to enter an-

COSMAC CLUB COSMAC CLUB COSMAC CLUB COSMAC CLUB COSMAC CLUB COSEAC CLUB

Page 2

Vil.

other instruction to write or erase, the
20" stays there and need not be re-enter-
ed. By timing yourself with the blinker
you can draw a straight line, one bit at a
time, quite rapidly, To change the blinker
rate, alter the byte at M(00 D8).

'A2' will fill the current page with what-
ever you entered in (I1l.) If you entered
'00' then this is a 'clear' subroutine.
Returns to (V1.

VIll. There are eight movement subroutines call-

IX.

X'

Xi.

Xil.

ed from (VL).

120" ~ up 28' -~ up and right
'IC! - right '4D' - down and right
161" — down 169! ~ down and left
D' -~ left '8E' - up and left

You could spread these subroutines out over
another page so that each one could begin
with an address easier to remember (e.g.
20, 40, 60, 80 for square movements, etc.)
but you may be surprised how quickly you
will pick these wp. Al movement subrout-
ines display the cursor's new address and
return to (VIL.).

'B3' loads what you see on the screen into
the current save page and initializes the
next save page, the number of which is
displayed, then returns to (V1) While you
are drawing with the cursor, the display
shows the cursor address, alternating with
option selection. To remind yourself of
the current save page number without init—

jalizing to the next save page, call 'CB'
instead of 'B3',

If the page you have just saved turns out
to be the last one, 'EE' is displayed and
the program returns to (Iil.) instead of
(VI.) assuming that you are ready to ani-
mate. A shortcut back to (I111.) without
f(‘{}llmg) up yowr memory is to call 'CA' from

'DO' will issue a prompt for new cursor
address., :

'DB' will issue a prompt for calling any
save page. This .will be used mainly after
you have watched the animation and have
decided to do a little editing.

This is the patch to your own subroutines
on Page 02. 'DF! as listed, '00' is the
only allowed response to the prompt — this
will draw a border around the perimeter of
the current page. The border subroutine,
given here without notation, is worth in-
vestigating for a way to add elements to a

QUESTDATA COSMAC CLUB

drawing without disturbing drawing that may
have already been done on that page. Poss—
Ible subroutines here include pattern gen-
erators, alphanumerics, figures, any set
element to be reused. (This is where jack
Krammer left you, too.) Complex routines
may require the storage of registers for
which you may want to initlalize another
stack. As a rule, youwr routines should end
with 'DB' to return to (Vl.).

Register Usage:

R(0O) - DMA
R(1) Interrupt routine

R(2) - Stack Pointer

R(3) - Program Select

R(4) - Utiltty

R(5) - P.C. for Animation or Drawing Entry
R(6) - Utlllty

R(7) = Utility

R(8) - Save page Pointer

R(9) - Cursor

R(A) - Cursor Address

R(B) - P.C. for Drawing Main

R(C) = P.C. for Drawing Subs
R(D) - Bl inker Sub
R(E) - P.C. for Page 02 Subs
R{F) ~ «1 Minus Cursor

«0 OR Cursor

0000 90B1 B2B3 B4B5 F816 A1F8 FFA2 F832 A3F8
0010 4EA4 £2D3 7270 C4C4 C422 7822 52F8 03BO
0020 F800 A080 E2E2 20A0 E220 AOE2 20A0 3C23
0030 3014 7B3F 336C 6422 3735 A67A 54F8 01B4
0040 FBA8 A486 5469 38D5 F803 B493 A4F8 6954
0050 1494 FB04 3A4D 7B3F 576C 6422 3759 AS57A
0060 3047 93B4 B6F8 AOA4 F895 A67B 3F6C 6C64
0070 2237 6EFC 0154 3F76 6C64 2237 7856 TAFS8
0080 04B8 FB803 B793 ATA8 9852 6422 4857 1797
0090 FBO4 3A8C FB862 B4A4 2494 3A98 37A5 98FB
00AO 633A 8230 7F37 A53F A7D3 F801 BBBC BDAS
0080 ABF8 02BE F87B AAF8 D7AD F803 B7BA 938D
00CO A7A8 7B3F C36C 6422 37C5 B87A 4857 1797
00D0 FBO4 3ACC 6CB8 DBF8 3386 A626 963A DB30
00EO D600 0000 0000 0000 000G 0000 0000 0000
00F0 0000 0000 0000 0000 0000 0000 0000 25AA
0100 DCOA 5289 FIAF 5289 F5BF 7B8F S5ADD 3716
0110 7A9F SADD 3F07 7B6C 6422 3717 AC7A 3000
0120 8AFF 0BAA 5264 22DB B9F6 A93B 348A FCO1
0130 AAF8 80A9 BAFF 0BAA 5264 22DB 89F6 A93B
0140 488A FCO1 AAF8 80A9 8A52 6422 DB8BY F6A9
0150 3B59 8AFC O1AA F880 A98A FCO8 AA52 6422
0160 DBBA FC08 AA52 6422 DB89 FEA9 3B75 BAFF
0170 O1AA FB0'! A98A FCO8 AA52 6422 DB89 FEA9
0180 3B89 BAFF O1AA F801 A98A 5264 22DB 89FE
0190 A93B 9A8A FFO! AAF8 O1A9 BAFF 0BAA 5264
01A0 22DB FB803 B493 A4F8 69A6 8654 1494 FBO4
01B0 3AAA DBF8 0384 93A4 4458 1894 FBO4 3AB8
01CO 98FB 103A CBF8 EE52 6422 D398 5264 220B
01D0 7B3F DI16C 6422 3703 AA7A DBFB BAAS D57B
01E0 3FEO 6C64 2237 E2AE 7ADE 0000 0000 0000
01F0 0000 0000 0000 0000 0000 0000 0000 0000
0200 F803 B693 A6F8 FFA4 8456 1686 FBO8 3A08
0210 0652 F880 F156 86FC 07A6 0652 F801 F156
0220 1686 FBF8 3A10 8456 1686 3A26 DB

P.0O. Box 4430, Santa Clara, CA 95054

ADDR CODE

|
0000 90 B1 B2 B3 B4 BS
0006 F8 16 Al
0009 F8 FF A2
000C F8 32 A3
O0OF FB8 4E A4

0012 E2 D3
0014 72 70

0016 C4 C4 C4
0019 22 78 22 52
001D F8 03 BO
0020 F8 00 AO
0023 80 E2

0025 £2 20 AO
0028 E2 20 AO
0028 E2 20 A0
0028 3C 23

0030 30 14

I

0032 78

0033 3F 33 6C 64 22
0038 37 35 A6

003B 7A 54

003D F8 01 B4

0040 F8 AB A4
0043 86 54

i
0045 69 38

0047 D5

0048 F8 03 B4
004B 93 A4

004D F8 xx 54 14
0051 94 FB 04 3A 4D
00%6 78

0057 3F 57 6C
005C 37 59 AS

64 22

v
005F 7A 30 47
0062 93 B4 B6

0065 F8 AD A4

0068 F8 95 A6

0068 7B

006C 3F 6C 6C 64 22
0071 37 6E FC 01 54

0076 3F 76 6C 64 22
0078 37 78 56

007E 7A

007F F8 04 B8

0082 F8 03 B7

0085 93 A7 A8

0088 98 52 64 22
008C 48 57 17

008F 97 FB 04 3A 8C
0094 F8 yy B4 A4

0098 24 94 3A 98
000C 37 A5

QUESTDATA COSMAC CLUB

COMMENTS

Initiallze registers to
point to:

interrupt routine,
stack,

start of program
location to store first
input.

Set X and go to program
Interrupt ex!t: restore
D, X, P

tnterrupt entry: nop's
store X, P, D on stack
initlallze DMA pointer

Reset DMA pointer
to repeat each line
4 times

Test for end of window
Branch to exit

Turn on Q

Load and display Switch
Byte;

Store 5.B. In R(6).0

Turn off Q; store S.B.
via R(4)
Reset R(4) to another
location

and store 5.B. there as
well.

Turn on TV; skip next
instruction

Exit from program select
Point R(4) to screen page

Load screen with Input
from M(00 3C)

one byte at a time until
comp |leted

Turn on Q

Load and display S.B.;
Store S.B. in R(5).0 (to
become P.C.)

turn off Q; branch to exit
point registers to
locations

to store two inputs

turn on Q

load and display S.B.;
add 01 to S.B.; store via
R(4)

Load and display S.B.;
store S.B. via R(6)

Turn off Q

Point R(8) to first save
page

Point R(7) to screen page

Display save page number
Load save page onto screen
until completed

Load delay timer with
input from M(00 7D)
Countdown delay timer
Continue if 'I' not
pressed

ADDR
009t

00A1
00A3
00A5
00A9

00AA
O0AE
00B1
0084

00B7
00BA
00BE
00C2
00C3
00C8

00cs
00cc
00CF
00D4

Vi

00D6
00D7
0008
0OODF
00FD
0100

0101
0103

0106
0107

010A

010D
010E

0110
0113
0114
0116

0117
O11A

011D

0120
UR
0124

0128
0128

012D

013

CODE

98

3A

37

D3

F8
8D
F8
F8
Fa
F8
93
B
3F
37
TA
48

97
6C

89

52
89

78

DD
37

TA
bD
7B

6C
37

TA

8A

52

89
3B

8A

F8

FB
82
7F

AS

01
A9
02

78

D7
03
BD

c3
C5

57

B8

33
06
FF
be
52

F1

F5

8F

16
SF

07

17
30

FF

64

F6
34

80

z

3F

BB
AB
BE
AA
AD
B7
A7
6C
B8

17
04

B6
3A

AF

BF

5A

5A

22
AC

00

08

22

A9

01
A9

A7

BC

BA

AB

64 22

3A CC

A6
DB

AA

DB

AA

Page 3

COMMENTS

Test save page number for
limit from M(00 75)

If timit not reached, load
next page;

if Iimit reached, branch
to reset

If 'I' pressed at

M(00 9C) walt for

'I'' released and branch
to (111.)

Initiallze registers

to point to:

page 02,

starting address of
cursor,

blinker timing subroutine,
screen page

Turn on Q

Load and display 5.B.;
Store S.B. in R(8).1
(select save page)

Turn off Q

Load save page onto screen
until completed

Reset R(8) to start of
save page

and go to cursor routine
Load b!inker timer
Countdown timer

Branch to exit

Stack

Cursor routine exit

Load via cursor address,
put on stack,

OR with cursor, put result
in R(F).O,

Replace byte on stack
Subtract cursor, put
result in R(F).1

Turn on Q; put cursor on
screen

Delay subroutine
Continue if '1' NOT
pressed

Turn off Q; put cursor on
screen

Delay subroutine

Repeat if '1' not pressed
Turn on Q (if not already
on)

Load and display S.B.;
Store S.8. in R(C).0 (to
become P.C.)

Turn off Q and branch to
exit

Subtract 08 from cursor
address,

display new address,
return

right shift cursor

Jump ahead if no carry
occurred,

if carry occurred, adjust
address

and cursor

P.O. Box 4430, Santa Clara, CA 95054

©0E0)

Page 4
ADDR CODE

0134
0138

013C
013F
0141
0145
0148

RD

014D
0150
0152
0156
0159
0150

D
0161
0165

DL

0169
016C
016E
0172
0175
0179

017D
0180
0182
0186
0189

Lu

018E
0191
0193
0197
019A

019€
Vil

01A2
01A5
01A7
01AA
01AD
0182
Vil
01B3
0186
0188

0188
01C0o

01C5
01CA
01C8
01CF

8A
52

89
38
8A
F8
BA

89
B
8A
F8
8A
52

BA
52

89
3B
BA

F8
BA
52

89
3B
BA
F8
8A

89
38
8A
F8
8A

52
F8
93
F8
86
94
DB
F8
44

94
98

F8
D3
98
DB

FF
64

F6
48
FC
80
52

Fé
59
FC
80
FC
64

FC
64

FE
75
FF
01

64

FE
89
FF
01
52

FE
9A
FF
01
FF

64
03
Ad

XX

54
FB

03
58

FB
FB

EE

52

08
22

AS
(o}

64

A9

o1
A9
08
22

08
22

A9
o1
A9
64
A9
o1
A9
08

22

B4
A6

14
04

B4
18

04
10

52

64

AA

DB

AA

22 DB

AA

AA
D8

AA
DB

AA

AA
0B

AA

22 DB

AA
AA
DB

3A AA

3A B8
3A CB

64 22

22

COMMENTS

Subtract 08 from cursor
address,

Display new address,
return

right shift cursor
Jump if no carry
Adjust 1f carry

Display, return

right shift cursor
Jump 1f no carry
Adjust 1f carrv

Add 08 to cursor address
Display, return

Add 08 to cursor address
Display, return

Left+ shift cursor
Jump if no carry
Adjust If carry

Add 08 to cursor address
D'splay, return

Left shift cursor
Jump 1f no carry
Adjust if carry

Display, return

Left shift cursor
Jump 1f no carry
Adjust If carry

Subtract 08 from cursor
address
Display, return

Point R(4) to screen

Load R(6) with Input from
M(00 43)

Load screen with R(6)
until completed

Return

point R(4) to screen

Load save page from
screen via R(8)

untit completed

Test save page number for
1imit

1f }imit reached, display
EE

and return to program
select

If limit not reached,
display page number

and return to cursor
routine

QUESTDATA COSMAC CLUB

ADDR CODE

X
0100
0101
0106

0109

X
010B

010&

Xi

010F
01E0
01ES

01E8

X1l
0200

0203
020%
0208
0208
0210
0212
0218
021A

021C

0221
0226
0229

022C D

78
3
37

7A

F8
D5
8
3F
37

7A

01
D3

DB

BA

EO
E2

6C
AA

A5

6C

5 B6

A4
08

F1

> 07

F1
F8

26

64 22

64 22

3A 08
56

56 16
3A 10

COMMENTS

Turn on Q

Load and display S.B.;
store S.B. in R(A).0
(cursor address)

Turn off Q and return

point R(5) to middle of
(vo)
and go there

Turn on Q

Load and display S.B.;
Store S.B. In R(E).0 (+o
become P.C.)

Turn off Q; go to some-
where on page 02

Non overwriting border
subroutine

PUDI I Sher cesesnssesnsQuUest Electronics
Ed 1t OretecscsccnasccenccsPaul
QBUG Ed ! 1OreesssssecsescecccFred Hannan

Proof

The contents of this publication
copyright and shal
permission of QUESTDATA.
to quote short sectlions of articles when used In
reviews of this publication,
contributions
will be returned only when accompanied by a se!f
stamped envelope,
programs submitted will appear with the authors
name unless the contributor wishes otherwise,
is at the rate of $15 per published
QUESTDATA exists for the purpose of
information

Payment
page.
exchanging
microcomputer.,

addressed

Read | ngoo-oco--ocooouonj ud Yy
Product | ONeecessccecscessce JON N

from

QUESTDATA
P.0. Box 4430
Santa Clara, CA 95054

not be reproduced without

Its

Messinger

Pitkin
Larimer

are
Permission Is granted

QUESTDATA we!comes
readers, Manuscripts

Articles or

about the RCA 1802

P.0. Box 4430, Santa Clara, CA 95054

Page 5

Q-BUG

Here are the details for eliminating more
of the Super startup routines.

The nominal startup point for Super s
address 0100, Here, a long branch is made to
address 1800 where Super determines the end of
your memory and stuffs it and other static data
to work page 0000,

| already have suggested that you save work
page 0000 as part of youw Super master program.
If you did this, the end of memory location and
other data are included in youwr program and you
do not need to go through the routine each time
you start up Super.

The routine at address 1800 runs through
address 183F and you can simply fill this por-
tion of memory with %C4"s and hold it for use in
the future,

The long branch at location 0100 is also no
longer required and can be changed to "C4 C4
C4". Execution will now merely fall through to
address 0103 which contains the long branch "CO
OF CD". This is the same address that the rou-
tine at address 1800 would branch to when it
finished. Thus, you end up at the same point but
have freed up 64 bytes of program space.

Incidentally, although the manual for Super
states that address 0100 is the cold start point
and address 0103 is the warm start point, this
is not correct. As just explained, the only
difference between starting at 0100 or 0103 is
the bypassing of the routine at 1800. The actual
cold or warm start address is contained in a
routine on page 0100 which branches to the pro-
per address in response to your answer to the
"C/WI" prompt. | sincerely suggest that you DO
NOT make any changes to the C/W? routine unless
you are quite certain of what you are doing. A
mistake here can really mess up Super.

Now, lets clear up an annoying little error
in the way the command word "THEN" is printed.
At present, THEN is treated as an operator and
is coded to print a space before the word but
WITHOUT a space after the word. To me, this
looks rather odd when an IF/THEN line is prin-
ted.

QUESTDATA COSMAC CLUB

A very simple correction to the first byte
in the THEN command table entry will place the
desired space after the word. The command table
entry for THEN is presently:

Address: 06B4 25 54 48 45 (E CS
(T) (H) (E) (N)

Referring to the manual, you will find that
the first byte in the entry table controls two
things. The lower five bits determine the length
of the word. Bit five (by the way, the bits are
numbered from RIGHT to LEFT and start with bit
#0), if a 1, prints a space before the word and
bit six, if a 1, prints a space after the word.

In binary (or bit by bit), 25 looks like
this:

BIT# 7 6 5 4 3210

0010 0101

As you can see, bit five is set to a 1 but
bit six is a 0.

To get the trailing space, you merely need
to change bit six to a 1. In binary, this would
look like this:

BIT# 7 6 54 3 2 10

0110 01 01

Changing the leading byte in the command
table at address 06B4 from 25 to 65 is all that
is needed to remove this "BUGH".

Now, a useful (I hope) program.

in many financial type programs written for
the TRS 80 and other machines, a nifty command
statement called "PRINT USING" is available.
This statement formats the columnar output of
strings so that the decimal points, for instan-
ce, all line up beneath each other when printed.

Unfortunately, Super does not offer such a
command. We can, however, do this type of for-
matting with a simple Basic routine called by a
GOSUB from the main program.

P.0O. Box 4430, Santa Clara, CA 95054

Page 8

We will start with line #65000 in order to
avoid any possible conflict with the regular
program line numbers. First, at the point at
which you wish to invoke the subroutine, you
must insert a line such as:

(7)$ = X$(255): GOSUB 65000

This line will make X$(255) equal your
original string (?)$. | suggest X$(255) to avoid
any overlap with your regular program strings.
Also, X$(255) takes the same memory space as
X$(1)e Of course, you can use any string you
wish.

Line 65000 will establish the format of
your string printout. For instance, If you want
your printout to line up dollar amounts up to $1
miltion, you would enter:

65000 N$(255)="0,000,000,00"

Again, you are using a work string name
which is your choice. Line 65010 will measure
the length of the $1 million dollar amount:

65010 N255=L EN(N$(255))

Line 65020 will provide the space to be
inserted in the final string to bring it up to
the $1 million dollar length and line 65030
provides the "$":

65020 N$(253)=n n
65030 N$(254)=n¢n

Line 65040 will measure the length of
X$(255), which was copied from the regular prog-
ram string:

65040 N254=L EN(X$(255))

Line 65050 will test the length of both
strings to check for the possibility that the
regular program string (and thus X$(255)) s
equal to or greater than $1 million already. If
so, it will put the $§ sign in front and return
to the main program:

65050 IF N254>=N255 THEN
X$ (255)=N$ (253)+X$ (255) : RETURN

QUESTDATA COSMAC CLUB

Line 65060 will test the lengths of both
strings and add a space in front of X$(255) if
it Is less than $1 million dollars and then
return to line 65040 to reset the length of
string X$(255) In the counter N254:

65060 IF N254<N255
THEN X$(255)=N$(254)+X $(255): GOTO
65040

The program will loop betwesn line 65060
and 65040 until the length of both strings
X$(255) and N$(255) are equal. At that polint,
line 65050 will pop on the dollar sign and
return to the main program.

In the main program, Iimmediately following
the first inserted line, Insert:

(?)$ = X$(255)

This will replace the original main program
string with the new $1 million dollar formatted
string. As an example, $ 9876 should be refor-
matted and print as:

$ 98.76

This routine will also work with non-dollar
amounts or just plain words. Remove the decimal
point in N$(255) and do not input lines 65030
and 65050,

Will this routine work with variables? Not
as it is now but it is possible to convert
variables to strings in Basic. HOW??? Well,
this Is a good puzzler for you, the reader, to
solve. Lets get youwr brains and pencils busy and
have some reader input. All those who submit
working solutions will be mentioned in a future
QBUG cdumn.

A recap of the reformatting program is:
MAIN PROGRAM ~ X$(255)=(7)$:GOSUB 65000

65000 N$ (255)="0,000, 000, 00"

65010 N255=LEN(N$ (255)

65020 N§(254)="

65030 N§ (253)="$"

65040 N254=LEN(X$(255))

65050 IF N254>=N255 THEN
X$(255)=N$ (253)+X$ (255) : RETURN

65060 IF N254<N255 THEN
X $(255)=N$(254)+X $(255):GOTO 65040

MAIN PROGRAM - (7)$=X$(255)

P.O. Box 4430, Santa Clara, CA 95054

LOST-A-BYTE?

Jess Hillman

Ever hand-assembled a long program—by long |
mean one that fills two or more pages of mem-
oy—and found that after a length of time ¥Bis"
start to look like "8's® or "3's"? Even quality
reproductions of program listings tend to blur
after a while.

Here's a comparatively short program that will
enable your Eif to search through any length
segment of memory, or all 65K bytes if you wish,
for a specific byte. As written the program runs
in page 00 of memory and is set up to examine
the first 4K of memory.

The program will enable the user to double
check all the memory locations where some trou—
blesome code occurs. When entering the program
in memory these are the key locations: 01,
high and low address bytes of the memory locat-
ion where the byte search begins; 07, OA—high
and low address bytes of the ending memory loc-
ation; 0D —this is the specific byte for which
you are searching. The program uses register
three as the curent data pointer, register four
to count the number of bytes checked and regis-
ter six as a pointer to tell the program it's
time to stop at a specific location. Register
five contains the search byte, which is also
stored on the stack beginning at location 90,

When you load the program in page 00 and run
it, the data displays will almost immediately
show "00" - the high address byte of the code
for which it is searching. Press the input key
and the display will change to show the low
order address of the search byte. Press the
input button once more and the program resumes
its search, stepping through the specified mem-—
ory area showing you first the high byte, then
the low byte of the addresses where the search
byte occurs.

Once the last byte of the memory segment has
been examined (refer to program locations 1A-2D)
the program offers you the option of searching
for a different byte, turning on the Q LED and
then looping (locations 40-52) until you key in
the data and press the input key. Press input
again, after the new search byte has been stored
in location 000D and echoed to the data dis-
plays, and the process starts all over again.

| have successfully used this program to debug
a Pilot interpreter | hand loaded into my sys—
tem. Perhaps you will find as good a use for it,
also.

QUESTDATA COSMAC CLUB

ADDR CODE

00 F8 00
02 B3

03 F8 00
05 A3

06 F8 OF
08 B4

09 F8 FF
0B A4

oC FB XX
0E A5

OF 93

10 B6

11 83

12 A6

13 F8 90
15 A2

16 E2

17 85

18 52

19 43

1A F3

1B 32 2€
D 24

1€ 94

IF 52

20 9

21 F3

2 CE

23 30 13
25 84

26 52

21 86

28 F3

29 CE

27 30 13
2C 30 40
26 93

2F 52

30 64

31 3F 31
33 37 33
35 83

36 FF O
38 52

39 64

3A 3F 3A
3 37 3%
3 30 1D
4 718

41 F8 00
43 BF

44 F8 D
46 AF

47 EF

48 3F 48
4A 37 4A
ic 6

4D 64

4E 3F 4E
50 37 50
52 30 00

Page 7

OPCODE OPERAND COMMENT

LD}
PHI
LDI
PLO
LDI
PHI
LD1
PLO
LDI
PLO

GHI
PHI
GLO
PLO
LDI
PLO
SEX
GLO
STR

LDA
XOR
BZ

DEC
GHI
STR
GHI
XOR

LSZ
BR

GLO
STR
GLO
XOR
LSZ
BR

BR

GHI
STR

out
BN4
B4

GLO
M1
STR
ouT
BN4
B4

BR

SEQ
LD}
PHI
LDI
PLO

SEX
BN4
B4

INP

BN4
B4
BR

#00
R3
#00
R3
#OF
R4
#FF
R4
XX
RS

R3
R6
R3
R6
#90
R2
R2
R5
R2

3
R4
R2
R6

#13
#40
R3
R2

#31
#33
R3
#01
R2

#3A
#1D

#00
RF
#0D
RF

RF
#48
#4A

F#AE
#50
#00

Set R3 as starting
address polinter

Set up R3 as end-
ing addr, pointer

Put sought after
byte in loc OD and
register R5,0
Copy starting
address pointer
into R6,

Set stack at loc.
90 of current page
R2=X

Start search by
getting the lost
byte and putting
it on the stack,
Load byte Into D
Comp needed byte
Jump 1f a match
Else count down
one {ocation and
see {f It's time
to stop.

Checking last mem
page.

¥ so, skip,

Else get next byte
On last page, chk
for last mem loc.

Last byte checked?
If so, skipe

Else get next byte
Go get next byte
to look for match!
Get high address
and store 1t

and show it

Wait

Until input press
Get low address
Adjust for proper
address and store
1t and show it
Walt for input key
to be pressed
Continue searching
TJurn on Q, get rdy
for new byte to
search for by

load ing address of
loc in main prog
into RF and making
I+ the stack ptr.
X=F

Wait for input key
pressed

Get new byte and
echo It

Wait for input key
pressed

Start looking for
the new byte,

P.O. Box 4430, Santa Clara, CA 95054

Page 8

INDEX TO VOLUME 2

BASIC, SUPER

"Hamurabi Game"”

Fred Hannan $10 pg. 10
“"Membership"

E.H., Sandelin #1l pg. 9~10
*Q Bug”

Fred Hannan #12 pg. 5-6
“Rotating Christmas Display"

Fred Hannan #11 pg. 11-12
*Using Super Basic"

Ron Cenker 42 pg. 6~7

BASIC, TINY

"Biorhythm"

Gary Gehlohoff ¥4 pg. 8-9
*A Cool Display"”

William Carnes 42 pg. 3
“E1f II Patches for TB TTY IF"

Chuck Reid #2 pg. 11
“pPatch Sort Function for Elf II
Tiny Basic”

Chuck Reid 41 pg. 11
"Tiny Basic Music"

Richard Warner #3 pg. 12
"Tiny Basic Screen Clear"”

Paul W. Morris #9 pg. 5
"Tiny Basic Strings"

David Taylor #8 pg. 14

GAMES
[

"Beat the Machine"”

Mike O'Rourke #5 pg. 7-8
*Biorhythm"

Gary Gehlhoff #4 pg. 8-9
*Mods to Biorhythm"

Gary Gehlhoff #9 pg. 9
*Blockade"”

Kevin Cutts . #1 pg. 6-9
“Cosmac Cowboy"

Gary Gehlhoff #5 pg. 9-11
*Elf Die"

Ron Zoscak #3pg. 1-2
nESP"

Jess Hillman #7 pg. 5-6
"Fifteen Puzzle, The"

Ray Tully $#1 pg. 1-5
"Fifteen Puzzle for E1lf II*

Robert V. Dipippo #2 pg. 11

QUESTDATA COSMAC CLUB

"Hamurabi Game"

Fred Hannan #10 pg. 10
MNim"

Richard Moffie 43 pg. 3-4
"One-Armed Bandit" 47 pg. 1-5

L., Owen
"Put Life Into Your Computer"

Ray Tully #4 pg. 1-5
“Saucer Squasher”

Mark Bitting #11 pg., 1-3
"STIX"

Vic wWorthington #10 pg. 1-4

JATHEMATICS,

"BCD to Binary Converter"

Al williams #2 pg. 10

"Hex to Decimal"
Paul J. Grech #3 pg. 7

*PNR Calculator"
Ron Zoscak #1 pg. 12-13

“The Sieve of Eratosthenes”
Phillip B, Liescheski III #2 pg. 4-5

MUSIC
L]

"Advanced Organ”
Nick Williams 8 pg. 13

*Auld Lang Syne"
Paul Thompson 46 pg., 9

"God Rest Ye Merry Gentlemen"
Gerald vanHorn #6 pg. 8

*Good King Wenceslaus" #6 pg. 9
Paul Thompson

"Harmonious Seqguencer"”

Don Stevens 42 pg. 8~10
"Jolly 014 8t. Nicholas"

Paul Thompson #6 pg. 9
"Joy to the World”

Gerald VanHorn #6 pg. 8
*Music for Expanded Memories"

Allan Armstrong #1 pg. 10-11
"Music to March By"

Dan Van Dyke #7 pg. 2
"0 Christmas Tree" #6 pg. 9

Paul Thompson

*Silent Night”
Jan Beckman #6 pg. 8

"Sonatina, Albert Biehl"
Ian Beer 43 pg. 11

P.O. Box 4430, Santa Clara, CA 95054

"Tiny Basic Music"

Richard Warner #3 pg. 12
"2-Part Christmas Carol"
Lester Hands #6 pg. 11
MISCELLANEOUS
"Address Search"
David Cartier #9 pg. 8-9

"Analog to Digital Converter
for the Super E1lf"

Phillip B, Liescheski III #8 pg. 1-2
"Annotated Bibliography"
Richard H. Johnson $4 pg. 6-8

"Annotated Bibliography Additions"
John Guarini #10 pg.

"Auto Telephone Dialer"
Stephen Rarick

"The Cosmac Kid"

Mark Wendell #12 pg. 7
"Contributing Authors to

Questdata Volume I" #1 pg. 17
"E-—Bug"

Phillip Liescheski III #11 pg. 4-8 &

#12 pg. 8-11

"Elf II Cassette Tape Reader"

Van C. Baker #3 pg. 8-11

"Index to Questdata

9

#9 pg. 10-11

Volume 1" #1 pg. 15-16
"Membership"

E.H. Sandelin #11 pg. 9-10
"Memory Dump:

Al A. Williams #6 pg. 12
"Relocator"

Enos Jones #12 pg. 1-4

"Sounds of Cosmac"
Mark Wendell

“Storage Transfer"
David Taylor

“Super El1f Cassette Format"
Questdata Staff

"Super El1f Cassette Tape Reader"
Van C. Baker

"Palking E1f"

#5 pg. 13-14

#9 pg. 6-7

#1 pg. 13-14

#4 pg. 10-13

Bobby R. Lewis #2 pg. 1-3

"Tricky Solution to a Clear

Problem"

S.G. Grant #1 pg. 14
"Using Super Monitor I/0"

Van C. Baker #6 pg. 10
"Chip 8 Programming"

Richard Johnson 48 pg. 3-5

QUESTDATA COSMAC CLUB

VIDEO

*Animation Program Mods”

Jeff Jones

"Blackboard and Doodles"

Jack Krammer

Page 9
#9 pg. 11

#9 pg. 1-5

“CRT Controller Tames 1861 Video"

Stephen P. Clark

"Elf Welcome"
Hugh Dagg

"Elfwriter"
Richard Moffie

"Improving Chip 8 Graphics"”

David Crawford

45 pg. 1-7

46 pg. 1-5

#7 pg. 9-12

#5 pg. 11-13

"Partial Display Sub-Routines"

Ken Mantei

"Program I Monitor"
David Taylor

"Rotating Christmas Display"

Fred Hannan

"A Scrolled Display"
Gary H. Price

"TVT-4K")
David Crawford

"VB1B Hex Dump”

Phillip B. Liescheski III

#10 pg. 11-12

#9 pg. 12

#11 pg. 1l1-12

#8 pg. 6-12

$#10 pg. 5-9

#6 pg. S5-7

CONTRIBUTING AUTHORS

Allan Armstrong
Van C. Baker
Jan Beckman

Ian Beer

Mark Bitting
William Carnes
David Cartier
Ron Cenker
Stephen P. Clark
David Crawford
Kevin Cutts

Hugh Dagg

Robert DiPippo
Ivan Dzombak
Gary Gehlhoff
Paul Grech

John Guarini
Lester Hands
Fred Hannan
Jess Hillman
Richard Johnson
Enos Jones

Jeff Jones

Jack Krammer
Bobby Lewis
Phillip Liescheski III
Ken Mantei
Richard Moffie
Paul W. Morris
L. Owen

Gary Price
Stephen Rarick
Chuck Reid

E.H. Sandelin
Don Stevens
David Taylor
Paul Thomson
Ray Tully

Dan Van Dyke
Gerald Van Horn
Richard Warner
Mark Wendell

Al Williams,
Nick Williams
Vic Worthington
Ron Zoscak

San Francisco, CA
St. Petersburg, FLA
Ashtead, Surrey
ENGLAND

Seattle, WA
Lemoyne, PA
Marlboro, MA
Lanham, MR

Coplay, PA
Tallahassee, FL
North Attleboro, MA
Steamwood, ILL
Waterloo, Ontario
CANADA

W. Warwick, RI
Latrobe, PA
Oswego, NY
Brampton, Ontario
CANADA

Ocean, NJ
Sylvania, OH

E. Lyme, CT
Columbia, MS
shorewood, ILL
Dallas, TX
Trafford, PA

N. Massapequa, NY
wWaterford, CT
Houston, TX

San Bernardino, CA
Canoga Park, CA
Winter Park, FL
Trenton, Ontario
CANADA

Sunnyvale, CA
N. Adams, MA
Sarina, Ontario
CANADA

Portland, ME

New York, NY

APO San Francisco, CA
Lombard, ILL
Baton Rouge, LA
Healdsburg, CA
Junction City, OR
W. Covina, CA

Los Angeles, CA
Bay St. Louis, MS
san Francisco, CA
Sundance, WY
Pittsburgh, PA

P.O. Box 4430, Santa Clara, CA 95054

Page 10

FOTATE & CLOD

Bill Carnes

One of the nice features of the COSMAC
microprocessor is the low cost graphics made
possible by the 1861 video chip. Graphic pat-
terns are not difficult to write and are easily
manipulated by software. The following program
is an aid in creating interesting graphic ef-
fects. The program takes a 256 byte page of
memary and either rotates it showing the "other
side" or flips the pattern over diagonally de-
pending upon the state of Q.

The program is ROMable and page relocat-
able, and nceds at least 3/4K of memary to work.
The Rotate routine starts at Hex address 08 and
the Flip routine starts at 09, This allows room
for branches and a stack. The program will
accept input of a source page and then a des-
tination page. When finished, the routine dis—
plays the result on your screen or displays any
page entered on the Hex keypad. Before running
the program, a pattern must aiready be entered
into a page of memory. For example, see
QUESTDATA No 8 for Jay Mallin's DOODLE PROGRAM
that makes loading a pattern easy.

Mirror images can be easily made by making
the destination page the same as the source
page. With appropriate combinations of the two
routines, many images can be made. A picture
may be quartered, halved, or folded along a
diagonal. Another application of this program
is to encode messages or programs. As long as
the destination is different from the source,

these routines are non-destructive and revers—
ible.

The program works as follows. The Q line
is set if the entry point is 08. Next, the
program counter is set to r(3). (For some sys—
tems, location 09 may be changed to "93"). The
stack is set to r(2), and the subroutines are
set next. The first subroutine inputs a Hex
byte. The second subroutine takes a source
byte, reverses the order of the bits in the byte
and stores the byte at the destination. The
program now obtains the source and destination,
clears the low order byte of the source regis—
ter, and if Q is set, it branches to the Rotate
routine,

The Flip routine begins by taking the byte
at the beginning of the source page, reverses
the bits, and stores the result at the end of
the destination page. The destination register
is decremented and the sowce register is incre-
mented until the routine is done.

QUESTDATA COSMAC CLUB

The Rotate routine takes a byte at the
beginning of the source page, reverses the bits,
and stores the result at the right side position
of the TV screen on the destination page. The
source register is incremented, and the destina-
tion register is decremented until the row is
done.” The routine then does the next row. When
completed with all the rows, the routine bran-
ches to the video display routine,

It is not necessary for you to count the
machine cycles between an Interrupt and DMA,
since the 00-Idle Iinstruction takes up any
slack. The same instruction slows down the Hex
keypad sampling where high speed is not needed.
If your machine states are decoded and shown on
LEDs, you will notice that the LED for Fetch is
dimmer, but you will also notice that your
graphics capability is brighter!

Registers Used:

0 = PC entry and DMA

1 = Interrupt

2 = Stack

3 = Main PC

4 = Blt+ count

5 = Row count

7 = Source polinter

8 = Destination pointer

9.0 = Original byte holding register
9.1 = Reversed byte holding reglster

A = Subroutine Get character

B = Subroutine Reverse byte
ADDR CODE COMMENT
0000 30 08/09 Branch to program
0002 =~ -= -= Free space
0005 00 00 00 Stack area
0008 7B SEQ, ROTATE entry
0009 90 B3 BA BB Set registers, FLIP entry
000B F8 00 B2 Set stack
0010 F8 07 A2 to 0007
0013 E2 SEX X=2
0014 F8 18 A3 D3 Set PC to r(3)
0018 F8 49 AA Set "Get char." sub.
001B F8 53 AB Set "Reverse byte" sub.
001E DA B7 Get source page
0020 DA B8 Get destination page

0022 F8 00 A7 Clear r(7.0)-source

0025 31 3t BQ to ROTATE

0027 F8 FF AB Set r(8.0)-destination
002A DB Reverse byte

0028 28 DEC destination

002C 87 3A 2A Branch [f not done

002F 30 68 Branch to video display
0031 7A ROTATE entry, REQ

0032 F8 08 A8 Set r(8.0)-destination
0035 F8 08 AS Set row count

0038 28 DEC destination

0039 DB Reverse byte

003A 25 DEC row count

0038 85 3A 38 Branch if row not done

P.O. Box 4430, Santa Clara, CA 95054

Page 11

ADDR CODE COMMENT ADDR CODE COMMENT
003E B8 FC OF A8 Add 10 Hex 0062 99 %8 Store byte at destinatio
0042 18 and allow carry~over 0064 30 52 Go to Return '
0043 87 3A 35 Branch 1f not done 0068 F8 77 Al Set Interrupt
0046 30 68 Branch to video display 0068 93 B! 69 Set Int. turn on
0048 D3 Return 006E 6C 64 22 BO Display keyboard
0049 6C 64 22 Input and display char. 0072 00 30 6E walt, do 1t agaln
004C 3F 49 Loop while In Is high 007% 72 70 Return from Interrupt
004E 37 4E Loop while In Is low 0077 22 78 Save "T"
0050 30 48 Go to Return 0079 22 52 Save "D"
0052 D3 Return 0078 F8 00 A0 Clear R(0.0)
0053 47 A9 Get byte, r(7)+1, save 007E 80 00 walt
0055 F8 08 A4 Set count for bits 0080 £2 20 A0 DMA
0058 89 FE A9 Left shift byte 0083 E2 20 A0 DMA
0058 99 76 B9 Right shift carry 0086 E2 20 AO DMA
005E 24 DEC blt+ count 0089 3C 7€ Done?
005F 84 3A 58 Branch [If not done 008B 30 75 Go to Return
by
Schramke

"Take two aspirin and be sure not to call me

in the ingl" of machine code, trying to find all occurences
n the morning

of page Initilization. Once | felt | had found
them all | began to load the program into mem-—
ory, and quickly saved it on tape, lest it just
disappear. You don't have to watch too much TV
to realize that the unexpected is usually the
most expected occurences. Well, as I'm sure
you've guessed, the program blew up and . well
two more times and each time the same thing
happened. At that, you can imagine the headache

"Darnl If they print a great program like that
in Questdata one more time and I'l kill myself!
How could it be that they write one program
starting at page 01, which | have, and then turn
around and write another at page 04, which |
don't have?"

"Well, what can be done?"

Actually we have two choices: we can write a
letter to ANS! and ask them to put standards on
programs for the ELF, much as they did for the
major languages like COBOL; or we could, volun-
tarily, "police our own". The latter & probab~
ly the best, and easiest way.

Take for instance the great program which
appeared in the 7th issue of Questdata (Vol. 1)
written by Edgar Garcia. |, for one, was very
excited when | saw this program, however, |
quickly realized that, where Mr. Garcla used

| had.

I did as they sald, and took a couple aspirin,
and quickly retired for the night. In the morn-~
ing 1 had a brand new perspective on the matter.
With all respect to Mr. Garcia, instead of
"weeding" through the program again, | wanted to
find out where Mr. Garcia resided and spray
paint the word "ELF" across his windows. Once |
had grasped hold of myself | realized that there
was one more thing | could do. 1 went to my
junk box, pulled out a few parts and re-address-
ed my memory to Mr. Garcia's specifications. |
loaded the program, and, sure enough, the prog-

pages 00-06, | only had 04-0B. No problem. |

ram worked very well.
got out a pencil and began to weave in and out

A 12 issue subscription to QUESTDATA, the publication devoted
QUESTDATA becrigtion vo WESTIATH, e L ,
Santa Clara. CA 95054 (Add $6.00 for airmail postage to all foreign countries
' except Canada and Mexico.)
Your commente are always welcome and eciated. We want to
Payment. be your 1802'e best friend.
O Check or Money Order Enclosed
Made payable to Quest Electronics

|

1

|

I

I

1

|

I

: NAME
I O Master Charge No —
i

|

|

1

|

|

1

1

i

O Bank AmencardNo.
O Visa Card No.
Expiration Date:

ADDRESS

CITY STATE Zip

Signature

0 Renewal [JNew Subscription

Page 12

| began to feel a bit upset that ! would have
to re-address memory every time | wanted to use
a program which just didn't conform to my hard-
ware specifications. | knew that there had to
be another way. | sat down and made a list of
all the things | felt that could cure this
problem that |I'm sure more than myself have
encountered. I've taken the liberty to submit
ths list, partially condensed and simplified, to
Questdata in hope that at least one person would
take heart and give us stubborn hobbyists a
break. Such could be used as, well, the outline
for a standard. Here it is:

1. Omit cute little tricks when addressing the
high—order byte of a register whose purpose is
to point to a memory location. Take for instan—
ce the person who needs to clear a register (as
a counter or whatever) and does it on page 00
using a sequence like « 90 A8 You know what
happens when a person then wants to locate the
program at page 01; the counter, instead of
being cleared, is initialized to 01,

2. Always document programs, no matter how small
or how large. If you want people to use your
ideas, first they have to know what you did.
Along the same lines, never list just machine
code. Going through machine code is a great
pain. Use standard RCA assembly language along
with, or instead of machine language. This
makes the program not only easier to add to and
read, but it also allows another person to go
through your program quickly without having to
contemplate machine code.

3. Make a seperate table, along with the prog-
ram, which states at what location a page number
is initialized, and give the page number a sym-
bolic name, such as DISP for a display page, TAB
for a table page, etc. This allows a person to
go through and change the required page numbers
without being restricted to your absolute ad-
dressing.

4. Not all ELF's use the same 10 ports or EF
flags, so, the same should be done for 10 state-
ments and branches on EF condition codes. Make
a table, along with symbolic names, for all
instructions which deal with the outside world.
Remember, what may seem as a standard (like 6C
for the keyboard or toggles), may not be a
standard to another person.

5. As Mr. Garcia did, separate all subroutines
and data tables. This allows another person to
take certain subroutines you have written, and
possibly use them in a program of their own.

These 5 suggestions could not possibly cover
all cases and make up a standard, but it is my
hope that it would serve as the beginning of an
interaction between users. Such an interaction
could not hurt and may save you quite an aspirin
bill. | would encourage more people to write in
and offer suggestions, along the lines of mine,
which may help to make it easier to relocate
programs. | totally agree with the statement
made by Mr. Larry R. Baysinger on page 6 of the
5th issue of this newsletter. Conventions need
to be established now, before things get too far
out of hand, if they haven't already.

Before closing, | would like to apologize to
Mr. Garcia for the "picking-apart" | have done
to his article. | have done so for two reasons.
First of all, it is the first of the really big
programs to appear in Questdata, and therefor
was a large candidate to be "umruly". Secondly,
because it is one of the best programs | have
seen to date and | felt that the documentation
did not do justice to the hard job he had. |
feel that this lack of documentation may have
scared some people away from writing larger
programs due to the way M. Garcia's looked so
complex without documentation. | feel that,
with the proper documentation, nearly any prog-
ram, no matter how long, can be made simple.

COSMAC CLUB COSMAC CLUB COSMAC CLUB COSMAC CLUB COSKAC CLUB COSMAC

QUESTDATA
P.O. Box 4430
Santa Clara, CA 95054

ADDRESS CORRECTION REQUESTED

©0E0)

BULK RATE
U.S. Postage Peid
QUEST
Electronics

Permit No. 549
Sants Clare, CA

