g

COGNIAC CLUB COSMAC CLUB COSMAC CLUB COSMAC CLUB COSMAC CLUB COSMAC CLUB

Volume 1

wertdata____

Issue #3

IF PROGRAMMING IS A GAME, WHAT KIND OF A GAME IS IT?

You search for the underlying patterns in the
things you program. Writing a program takes
patience and concentration. It used to be that you
heard the art of programming compared to chess, But
is writing a program really like chess?
In chess you have a set of rules—these can be com-

P ROGRAMMING is a philosophical experience,

pared to the instruction set of the computer. Also, you -

combine these rules in combination with each other—
the move of the pieces. But there are differences. You
play chess against another chess player and you have
only one goal—to win the game. When you play the
game of hobby computers, you have no opponent
other than the computer. With a computer there are
an almost infinite number of goals—Jay Mallin, on
page 6 of this issue of QUESTDATA says computers
are “anything machines.” He is right, and since com-
puters have dropped in price, we find ourselves in the
midst of a computer revolution. Computers are taking
over more and more tasks.

. Since computers can do lots of different things,
hobbiests have chosen to have them do the fun
things which they enjoy programming and watching
their machines perform. This explains why Star Trek
and other games are so popular—such games are fun
to play. One of the big differences between the big
corporation computers and your microcomputer is
that you control your microcomputer. You do not
have to solvé some dull business application by Tues-
day. Sure, you can use the computer to solve some
business problem if you wish, but you can alsc use
the computer to explore the areas in life which you
wish to explore. If you like music or chess you can
use your computer to gain new insight into these
activities. If you wish to write a really interesting
rmusic program, you must explore and understand
pltch and tempo.

Let’s say the idea of building a really good chess
program fascinates a fellow named Melvin, He explores
why the Bobby Fisher P-K4 is a good opening for his
computer. Melvin devours chess books night and day.
Friends wonder why they haven’t seen him for months,
And then the day of the computer fair arrives and
Melvin’s 16K sure thing loses to a 2K homebrew in
5 moves. Sigh, it was all for fun. Also, by understand-
ing more about chess Melvin’s own game has im.
proved — he no longer loses in three moves,

ELECTRONIC TECHNOLOGY
IS ADVANCING RAPIDLY

Let’s compare programming and golf. In golf you
are really playing against your own score since you
have very little control over the score. of the other
person, This is like programming since you want to
write programs which are compact and waste as few
instructions as possible. Using lots of memory used
to be considered sloppy and expensive in the days
of core memory. Another part of the programming
game is speed, trying to meake your program run as
fast as possible—so that math problem pops onto
your display within the blink of an eye. Both golf
and programming take planning~you have to decide
which club to use for “an approach shot.” In pro-
gramming the question is—‘“which instructions are
the best choice.” - .

As in other games, you will find your own style
and personality coming out in the program, You
will find yourself saying, “this must be Melvin’s
code, since he loves tangled spaghetti code.” .

In chess, music, golf, programming, and other gamies,
you get better with practice. You become sccus-
tomed to favorite “syntaxes” of certain computer
languages and you gravitate to FORTH or PASCAL.
You find yourself reaching and there is always that
next programing mountain to be climbed. Your com-
puter cries out for more data. It seems to say, “‘may
your questing and learning never cease.”

FLOWCHARTS: KEY TO PROGRAM SUCCESS-

James C. Nicholson RULES. The rules are actually very simple and

In the first issues of QUESTDATA, you probably can be stated as follows: . .l
have looked at the coding examples and skipped over .
the flowcharts. And if you didn’t skip the flowcharts,
you gave them a cursory examination to go on with

Always start your flowcharts in the upper
left corner of your paper. -

the written material, You are not a “freak,” or *“dif- ® Move your logic flow down and to the right.
ferent,” or unusual in any way as this seems to be a ® Use connectors as often as possible to
generalized pattern for new programmers. The com- prevent confusing lines and eliminate line
ment, “Flowcharts are used only by the professionals,” “crossovers.”

is not necessarily a true statement. Flowcharts are ® Use arrow points to show the direction of

needed by EVERYONE. And they should be com-

flow.
pleted BEFORE you start your programming. v e
So what's the “big deal” about flowcharts? Very ® Always have ONE entry point into any
simply expressed, it is a pictorial view of your logic in symbol. Multiple entries can be handied as
' shown below,

solving problems. Symbols and quite rigid rules scare
a lot of people away from the practice of flowcharting.
Actually, they aid you in planning your logic just as a
blueprint aids a carpenter in building a house. Break- @
ing these “rigid” rules into a simple set of rules is not

that difficult, Let’s look at them: .
SYMBOLS. There are literally dozens of sym-
bols that can be used in flowcharting, but let’s look at,

and use, only 6.

/

END '

SYMBOL NAME OPERATION

-,
L%

® Always have ONE exit from a symbol except
terminal start/stop pracessing ' for a decision symbol which may have either
‘two or three exits depending on the compar-
ison. This is the only time that this “‘one
exit” rule can be broken.

operation arithmetic operations,
data movernent, satting
countars, intarnal work

decision compaerison, questions

connectors tig points for branches

inputfoutput ragding/writing data
display status lights

arrows direction of togic flow #® Place only one distinct action within each
symbol.

The “how-to-do-it"” is again very simple. You can
start with the following procedure in writing your
program until you are somewhat proficient in using
the symbols, at which time you may eliminate the use
of arrows to show flow direction if you wish, The 7
steps in flowcharting are:

(1) Write a program statement to define your
program.

(2) Define your input and output requirements,
including final cutput design. '

(3) Assign names (or registers in machine lan-
guage) for your program variables.

(4) Write simple phrases showing the desired
action of each step. Do not use symbols.

(5) Convert phrases to flowcharting symbols.

(6) Check out (debug) the logic of the flow-
chart AS IF YOU WERE THE COMPUT-
ER. Do niot assume any action.

{7} When you are satisfied the logic is correct,
code the program in the language you are
using.

You will find your error rate in coding will drop
immensely after you have started using flowcharting
techniques before coding. True, you may have to
change the flowchart after you have debugged the
program and have it running, but the time taken to
redo the flowchart will be much less than the time
taken to debug a non-flowcharted program. After all,
isn’t it a good idea to have everything laid out in
order before starting a job. Consider the time when
you built your Super Elf.

Want some practice? Try some of these problems
on for size:

® Draw a flowchart to make a peanut butter
and jelly sandwich with selections of two
types of jelly and three types of bread.
Decide whether to cut it in half or serve it
whole, (After you have completed the flow-
chart, try it out in the kitchen. This is one
time you can “eat your mistakes.”)

® Draw a flowchart to set your alarm clock
before retiring and test the time every minute
until it is time to sound the alarm. Then turn

on the Q-LED, (If you are using a relay mod-

ification, sound an alarm). Try coding it for
the Super EIf.

Page 3

® Draw flowcharts from various coded pro-
grams. This is a very helpful tool in under-
standing the logic of the program and learn-
ing the instruction set of the RCA 13802, It
also will give you a more complete docu-
mentation folder for the program applica-
tion.

Well, that’s it. Flowcharting is a blessing if you
understand it and look at it as a joyful experience in
‘computing. After all, anything that makes running
our Super Elf easier should be fun, Try it. You'll get a

lot out of it,

RS R

MEMORY RECALLER

By David K, Taylor

This program is a modification of the counter pro-
gram which appeared in the March 1977 Popufar
Electronics. The program displays the stored memory
bytes of the program you have entered so that you
can check to see that all the digits are correct, THE
MEMORY PROTECT SWITCH MUST BE ON
WHEN YOU RUN THIS PROGRAM. If the mem-
ory protect switch is not ON the contents of the
memory will be changed. When the program is exe-
cuted, the display will sequentially present the mem-
ory c‘:;:gtents at a rate determined by the byte in loca-
tion OD.

LOC, CODE MNEM. COMMENTS
00 F8 00 LDl INITIALIZE REG 1%

02 Bt PHI R1 HIGH

03 F8OQ0 LD INITIALIZE REG 1%

08 A1 PLO R1 LOW

06 E1 SEX R1 X=1

07 64 OouT 4 DISPLAY MIR(X};: RIX}H+1
08 FO LDX LOC. R{X} INTO D REG.
09 FCO01 ADI INCREMENT D REG.

0B B1 STR M1 STORE NEXT LOC.

oC FB3O LB LOAD DELAY

0E B2 PH| R2 R2.1=DELAY

oF 22 DEC R2 R2-1

20 92 GHI R2 D=R2.1

n 3A0F BNZ DELAY UP?

23 30 06 BR YES THEN REPEAT

WHAT THE MACHINE IS

THINKING

Let’s take another look at the D-Register (the D
stands for data). The D-Register is a kind of central
communications center for the 1802 microprocessor.
In fact, it is the Grand Central Station of the 1802.
That is, information passes through the D-Register on
its way to other registers and parts of memory. A lot
of data bound for other points must make a tempo-
rary stop at the D-Register, It is like stopping at Chi-
¢ago on your way to your destination of New York,

How would you load up the D-Register with data
which is bound for another register as its destination?
First we must load the D-Register with the hexadeci-
mal number we wish to have end up in the General
Purpose Register Matrix. If we want the hex number
FF to be loaded we can use the LOAD IMMEDIATE
(LDI or F8 in machine code). Looking at Users
Manual Number 201 we recall: “The byte immediate-
1y following the current instruction byte replaces the
byte in D.” So that is what we will do, we scribble
~ down F8 follwed by the number we wish to have in
the D-Register —in this case FF.

There are a number of books out that compare pro-
- -gramming to cooking: The Programming Cookbook
This. and The Programming Cookbook That, for ex-
ample. Anyhow, we will let the egg and mayonaise set
for awhile (errr, the loaded D-Register). Turning our
attention to the asparagus (ahhh, General Purpose
Registers), we prepare another part of the program
recipe. '

GENERAL PURPOSE REGISTERS

The COSMAC 1802 has 16 General Purpose Scratch-
pad Registers and they are each 16 bits long. We can
guess that these General Purpose Registers are impor-
tant or RCA wouldn’t have made so many of them. ..
and we would be right. In actual area, the General
Purpose Registers can be seen to take up a good por-
. tion of the 1802, Turning to the back of your Super
Elf manual or 1802 specifications sheet, you can see
that these registers look something like a Navaho
weaving and are located in the upper left hand corner
of the microprocessor. Even though they represent a
large part of the 1802’s architectural investment, they
are worth it for the programming tricks they will
enable us to perform. Since there are 16 of these Gen-
eral Purpose Registers, they can be numbered O thru
F. Each one of these O thru F registers has an upper
and lower portion. For example, the high part of
Register 9 has 8 bits and the low part has 8 bits, for a
total of 16 bits in all.

LOADING A GENERAL PURPOSE REGISTER

So pick a register, any register. Let’s say you picked
Register 9 as the lucky register to be loaded. OK, so

‘how do we do this? PUT LOW and PUT HIGH sound ~ - -

like they will do this job. Here is the official RCA
description of PUT LOW: “The byte contained in the
D-Register replaces the low-order byte of the register
specified by N, The contents of D are not changed.”
This sounds like what we want. Since A is the first
byte of this instruction and carries the meaning (PUT
LOW), and since N (the second byte) is to stand for
the register we want to put the D-Register data into:
We quickly write down A9. Putting the D-Register
high is a similar process—B9. Putting all parts of the
programming puzzle together, we have:

LOI F8

FF
PLO A
PHI B9

The instructions A9 and B9 say that the D-Register
is not destroyed when we PUT LOW or PUT HIGH,
so we know that Register 9 looks like:

HI { LO
FE | FF

WHAT DO YOU DO WITH A LOADED
GENERAL PURPOSE REGISTER
Now that we have Register 9 loaded, we might as
well do something with it. Let’s see, we could use it
as a pointer:

Anyhow, a pointer register points the way for other
data to follow. In this case, we are pointing to FF FF,
the very last location in memory. If we wanted to
store something in this location we would load it into
the D-Register (F8—followed by the data we wish
10 load in FF FF; say, hex 35) and with the STR (59
in machine language) instruction—project the data
into the memory location. This is kind of like putting
things in the transporter room of the Starship Enter-
prise (of Star Trek fame), and beaming them down
to a strange planet. Well, in a way it is. Anyhow, we
are not going to use the STR instruction today. If
you want to use the instruction go ahead but QUEST-
DATA cannot assume any responsibility for your use
of his instruction. Remember the black box with the
mysterious hand trick? Well, in that old toy avtoma-
tion, a hand would reach out of a box and throw the
switch that turned itself off and then would sneak
back inside the strange box. A very similar case t
what we have here. See, this pointer hand just escapa. _
from this box and is now going back into the box.

Where were we. If we are not going to use Register
9 to point, why don’t we just decrement it down to

zero and use it for a very long delay. To decrement it
we can use the DEC or machine language 29 instruc-
tion. The left hand byte (the 2) stands for the decre-
ment, and the right hand byte (the 9} tells which reg-
ister we wish to decrement.

So after issuing this instruction we have FF FE in
Register 9.

If we wish to test this number to see if it is zero, we
have to dump it back into the D-Register bucket. Since
the lower byte reaches 00 more quickly than the higher
byte, let’s test the higher part of Register 9 (because
we want a long delay). Looking around for an Instruc-
tion to use we quickly seize GHI (SN in machine lan-
guage). This instruction takes the high part of the reg-
ister designated by N and puts it into the D-Register.
Thus, 99 in machine language will do exactly what we
want. We now interrogate the D-Register, and ask it if
it has reached zero yet, The machine language condi-
tional 3A, as you recall from previous QUESTDATA's,
does this task for us, Thus, we can continue to branch
until the D-Register reaches zero (BNZ or 3A), and
when the D-Register equals zero, the flow of instruc-
tions continues.

Reviewing what we have scribbled down thus far in
machine language, we see:

LDI Fa
FF

PLO (9.0) A9
PHI(8.1) B9

—3. DEC {9.0) 29
GHI (9.1} 99

BNZ - 3A

X (LET X=BRANCH LOC.)
CODE CONTINUES . .,

If we put 7B at the start of the program and 7A at
the end, we will have: Q-LED turned on, a long delay,
Q-LED turned off, Try it. STARTING AT MEMORY
LOCATION 00: 7B, F8, FF, A9, B9, 29, 99,34, 05,
7A, 00. Save your memory contents after entering
this program since we will be using them in the next
project.

THE NEXT PROJECT

Pretend that at a certan hour the City of Los Angeles
wants all its stoplights to change to blinking yellow.
If you were given an 1802 microprocessor, how would
you make astoplight biink. In real life you wouid also
have to program around a clocking device to start the
blinking lights at a specific time of day. For this par-
ticular project you do not have to worry about time
but are commissioned just to make a blinking program.
One way to do this would be to test whether the
Q-LED is OFF {(BNQ), and if the Q-LED is not ON,
then turn it ON, Given this information and being
in command of the situation; you can now make the
L.A.P.D. happy. For the answer, turn to page 13 but
first give it a try on your own recognizance.

Page B

2

The sbove “picture” appeared in QUESTDATA
Issue Number 1. After some guick research into the
matter, QUESTDATA has determined that reader
Peter Estelle is absolutely correct. . . .

“By the way I believe your crazed arachnid to be a
lonely 4511 BCD-to-7 segment LED converter{driver,
Here was my line of thought. Hmmm . . . Power and
ground in the standard locations . . . Seven inputs or
outpuls on the same side of the chip . . . Four inputs
or ouiputs on the other side . . . A converter? . ..
BCD to seven segment? . . . V+glso goes our with the
seven outputs , . . To the databooks I went to find
the 4511, Am [right?" :

—Peter Estelle

“Is it a drawing of that rare insect, ‘Buggus Hard-
warus?’ or simply a Super EIf footprint?”
— Bob Richie

Reprint #1

QUESTDATA
P.0O. Box 4430
Santa Clara, CA 85054

Publisher Quest Electronics
Editor Bill Haslacher
Technical Coordinator 8ill Thompson
Programming Assistance Pam Gaziay
Proofraading ’ Ken Brown

The contents of this publication are copyright © and shall
not be reproduced without permission of QUESTDATA,
Parmission is granted o quote short sections of articles when
used in reviews of this publication. QUESTDATA welcomes
contributions fram its readers. Manuscripts will be returned
only when accompanied by a self-addressed stamped enve.
lopa. Articles or programs submitted will appear with the
authors name uniess the contributor wishes Otherwise. Pay-
maent is at the rate of $15 per published page. QUESTDATA
exists for the purpose of exchanging information about the
RCA 1BD? microcomputer. Subscriptions are $12 for this
monthly publication.

YOUR ANYTHING MACHINE TURNS

INTO AN ALARM CLOCK

By JAY MALLIN

A computer is basically an anything machine. With
the right inputfoutput devices, and within its speed
limitations, it can imitate just about any other elec-
tronic device.

You can, for instance, program your Elf to play
video games, At first this may not seem like much,
since you can go out and buy a ready-made machine
that just plugs in and does the same thing. However,
that video game can never do anything else. Your Elf
can also be a timer, tone generator, a calculatora. ..
an anything machine. It’s up to your imagination,

With the accompanying software and some super-
simple hardware, you can turn your personal anything
machine into a digital alarm clock. Designed for use
on a Super EIf or Elf, the hours and minutes are dis-
played on the hex output display, the Q LED tells
you whether or not the alarm is set, and a speaker
attached to the Q output gives a quiet buzzing for
one minute when the alarm goes off.

First put together the opto-isolator circuit, using
wire wrap or other techniques. Layout is not critical,
and just about any LED/phototransistor isolator will
do. The input is attached in parallel with the computer
across the 10 V power transformer —on the 10 V side,
not the 120 V side, Attach the phototransistor side of
the isolator to the EF3 line and the computer ground,
making sure the ground gets the emitter. Make sure
the transformer won’t be shorted by a loose wire to
the computer, since the EF3 line is connected direct-
Iy to the microprocessor and & short could fry its
brains out (nightmare of nightmares! By the way, an
opto-isolator is a good way to keep that from happen-
ing, since it can provide the computer with thousands
of volts of isolation from whatever circuitry is attached
to its other half.)

Next, put the program into memory. Addresses 01
and 04 should be the minutes and hours, respectively,
that you initially want to set your computer to; 1E
and 23 are the minutes and hours you want the alamm
to go off at if it is set.

When everything is set and checked, hit the RUN or
GO button. The display should show the minutes that
you set it to. Now depress the INPUT switch. The dis-
play should show the hours.

Depending on whether you have a keyboard or
switches, hit the O key twice or set all your input
switches to zero, The Q light will come on, showing
that the alarm is set. To turn the alarm off, move any
switch to the 1 position or hit any key other than 0,
and the Q Led should go off. With the alarm set, the
clock will buzz for one minute when the clogk reaches
the time you put into the memory. A regular Elf will
need a simple transistor amplifier to hook an 8 ohm
speaker to the Q line. The Super Elfs already have
them.

If nothing has happened except for the run light
coming on, the opto-isolator circuit probably is ni

Page 6

working. To check this detach the leads going to the ~ -

computer ground and EF3, and substitute an ohm-
meter. If it gives a reading near 0, or infinite with the
transformer plugged in, then this is what’s causing the
problem. Try reducing the resistor and make sure the
diode is connected correctly. Also make sure that the
circuit is attached correctly to the computer and
transformer. If the program seems to be behaving er-
ratically in other ways, you probably made a mistake
while putting the clock program into memory.

With everything working correctly, your Elf is keep-
ing time as accurately as any clock that plugs into an
AC outlet, Like them, it is based on the 60 Hz fre-
quency in the power line. The opto-isolator's LED is
flashing on and off at this frequency since it is pow-
ered by the AC from the transformer. To the com-
puter, this looks like a switch attached to the EF3
line being turned on and off 60 times a second. The
program loops once each time the “switch™ is “on,”
and every 3600 times advances the minutes by one.

Other parts of the program are used to make the
minutes and hours advance correctly. The computes
would like to count in hex, but it would not do to
have it displaying times like 12:4 A, so six is added 10
make it come out as 12:50,

~
Variations on this clock
program are endless.

An interesting part of the program is the part which
makes the buzzing noise when the alarm goes off. This
is done by bytes 26 through 29, which “flip-flop” the
Q latch, That means if the Q is on it is reset and if it
is off it is set. Done once every loop, this gives a 30
Hz buzzing noise.

Variations on this ¢lock program are endless. You
can have the Q line turn things on and off as set by
the clock. You can do away with the alarm, which
lets you use Q for something like an AM/PM indicator
and frees up the keyboard for other uses. You can
change the program from byte 45 on to make a 24
hour clock instead of a 12 hour one. You could im-
prove your programming skills this way since you
would probably need to figure out how the current
bytes work, and reading other peoples’ programs is
always a good way to pick up some new tricks. If you
make the program longer, remember to change the
stack location, set in byte 07.

If you want it to, your EIf could also keep trackﬂf\

days, months, years, and seconds. Finally, you ¢
use the opto-isolator setup as a time base for timers
and stop watches down to the 10th or 60th of a sec-
ond.

You can have your Elf do just about anything. Just
use your imagination and remember, it’s your anything
machine. .

Page 7

:
2t
S i
ey < N M it
I 3 + | souLojsugs| 3 883
- 1 _ omed ol §.282
surygy3op < = 7 o peeVAVAVAV o EE2EE
_ ML w n.m.mmm
g 3x2id
L R) T ..
8 y o N
B m ,mm m - »mmwmm mnmmmmm T
Zgign ik m___m it =t afpdnanf £ a8 o
AT mn X mmm w o H mm_mmmm mmm Wmm
.mmm m m nm ¥ mmnm(mn n n F p" m
- mmmmmmmmm%ummmmmmmmmm.mmmmmmmmm CEREEPEE P EERPELEL EPLERER
g | 1% 8 a8y & Kk K m8 2 AIBE 3 5 B 3% AN B

8 RARARIRANRRRARARINGASRARRASPRAAANRIAIASRNTABRIRIARSRASRRAR
g 8¥558328388AN N3N RAR AN ICNRRINARRANDSRRARANIYILSIS299RAR

fﬁ
.

S pniE

RB.O+=MINUTES
RB.1=HOURS
R2=0056 Xe2

OMTPUT
MlNUTES

QUTPUT
HOURS

inNPUT
KEYBOARD

mm;'rfoo

RB¥ALARM
TIME ?

Qe=~Q
FLII?EIFLOP

RB+1
RA=0FQF

RA-1..,

LV
o8

RB.0=6A
LhH?UHJ

RB4E -
tCARhY}

I Y
o

.,:,

ALARM c:,ocK
FLOWCHART

wepeo .‘. .
it
,
B 3
ia g

©0E0)

i

VIDEO GRAPHICS SOFTWARE, PART 2 Page®

Returning 1o the original purpose of the interrupt subrou-
tine, if the routing was merely to take care of the odd-cycle
timing correction and just provide the display starting addrass,
obviousty the intent of displaying just page 0 would not be
satisfiad, So the approach taken is to display each line four
times, thereby cutting the memory display to ons page. This,
then, requires the resetting of the data dispiay pointer batween
gvery group of four DMA bursts. However, when this approach
is taken, the automatic way that the rafresh would take cars
of itze!f is now given up, and the subroutine has to continuatly
raset the display pointer throughout the refresh period, This,
therefore, adds to the overhead of the microprocessor timing
cyclas neaded to refresh the display about B0% of the total
time, up from fess than a third otherwise. In addition, tha
termination of the refresh period must now be tested for the
subroutine pariodically in order to know when to get out of
it. The status line EF1 is provided for that purpose. H goes
togically high when the refrash period is up,

INTERRUPT SUBROUTINE ANALYSIS

The first location of the subroutine is location OQQF. Para-
doxically, the first two instructions are not to enter the sub-
routine, but to {eave it. The microprocessor does not start
axecuting instructions at location QOOF when an interrupt
oceurs but rather at location 0011, which, if you racall, was
loaded into REGISTER 1 during initiatization for that pur-
pose. Tha reason why the first part of the subroutine contains
tha axiting instructions is so that REGISTER 1, which is the
P REGISTER pointer while in the subroutine, is left pointing
to tha antry again when the exit is made. This j5 a typical
way to provide the entry address of a subroutine after it has
been accessed instead of having to retoad the address. This
makes the subroutine “re-antrant.’’

To meke following the flow of the subroutine easiar, it is
bast to analyze tha entering and exiting in that order first,
Since we have taken care of the overhead instructions, we can
now proceed to the heart of the subroutineg.

The entry and exit cverhead instructions are for the saving
of data values in the stack which is necessary to get the main
program running again from where it left off when the inter-
rupt occured, At location 0011, the “entry’’ to tha subroutine,
is 8 DEC instruction to point to tha “naext” preceding possi-
tion in the stack, Note that REGISTER 2 is decremented
hare. The interrupt re-adjusts X to refer to REGISTER 2 as
part of Its automatic function. The main program also uses
REGISTER 2 as the stack pointer so the DEC instruction
insures that whatever value is in the stack does not get stored
over if the same position were used. The DEC is also needed
because the RET instruction in the subrouting exit advances
the stack, and without the DEC, the wrong stack position
would be handed back to the main program.

The next instruction in location 0012 is the SAV instruc-
tion. This tauses the currant main program values of X and
P, which in this program are always X=2 and P=3, to be ab-
tained and stored in the stack. At interrupt, these values were
stored by the microprocessor. The naxtinstructlon in location
0013 is another DEC to get the next preceding Jocation of
the stack for saving the current velue of the D functlon
REGISTER to restore it to the main program at exit, This is
accomplished by the STR in location 0014,

The exiting instructions work in reverse to the above in-
structions in locations 0011 and 0014, In location O00F, the
LDXA instruction loads from the stack, which i still sitting
in the same position as it was left after the DEC instruction
in loeation 0013, and the praviously stored D value is put
back into D again. The LOXA also advances the stack to point
10 the position now whare the DEC instruction in lgcation
0011 lsft it. Now the RET instruction in locatlon 0010 can
retrieva the prier X and P values from the stack, restora the
main program X and P REGISTERS, end advance the stack
back to where the main progrem wes using it. Thus, this
partion of the program is re-anabled and further interrupts
will start the main program running again.

INTERRUPT SUBROUTINE

The only purpose of tha interrupt subroutine is to provids
the starting addrass of the data to be copied and put on the
TV screan by the video generator. In order to explain how
this is done, a thorough analysis of what happens when an
interrupt occurs and the subsequant video display is complatad
is needed. Thus, an explanation of the video generator fune-
tion and video synchronization will be given.

VIDEO GENERATOR

The video generator of the Super EIf works very efficiently
with the 1802 and memory. It can be thoupht of as an output
device whose sole purposa is to drive a TV monitor and to
prasent data from memory on the screen of tha TV, itis ca-
pabte of displaying up to four pages of memory or as little as
eight bytes of memory if so desired. The way the data is
obtainied by the video generator for the display is by means
of what is called DIRECT MEMORY ACCESS, or DMA.
DMA, means that the video generator obtains the data directly
from memory without the aid of the microprocessor itself,
Therefore, a program doesn’t need to provide the data by
looping through and executing output instructions but just
by providing the location of the data. If no further action is
takan by the program, the rest of the operation of the video
genarator is automatic and 1024 contiguous bytes of dete
would be fetched automatically and routed to the TV sereen, .
An important thing to realize is that not only is the aperation
of the video generator autemnatic, but it is neceasary as wall.
The video display consists of 128 lines on the screen of the
TV and 8 bytes of data make a line, Thus, the video genera-
tor requires B stream of 1024 bytes every time the screen is
written onto (or “refreshed’). Complete refresh oceurs about
61 times a second in the Super EIf. The video generator pre-
sents an interrupt to the microprocessor which causas a hold-
up on whatever it is doing. Then, 1024 bytes of mamory data
is obtained via OMA and written onto the TV scresn, At the
time of the interrupt, exactly 29 machine cycles later, which
is approximately 130 microseconds, DMA starts.

The DMA sctually accurs in bursts. At the moment of
DMA, REGISTER O is automatically used for the location of
data in memory. Each burst obtains just 8 bytes, lasts 8 me-
chine cycles, {approximatsly 36 microseconds), aftar which -
REGISTER O will have been incremented by 8. There is 8
time lag of 6 machine cycias until the naxt DMA burst which
is exactly like the prior one. This process continues for a
total of 128 DMA bursts and the TV screen has baen written
upon from top to bottom. The first burst of DMA provides
the top line of the screan and the data is written from left to
right for a total of 64 positions, sach bit, of the sight bytes,
reprasenting one of the B4 positions. This process then repeats
itself. If the bit of a byte of data is a logical 1’ then the
corresponding position on the screen is a bright rectangle, if
the bit is a 0" then its position is a derk rectangie. .

It it were desired to display four consecutive pages of mem-
ory, it can be guessed that the interrupt sequence would be
simple. Upon entering the interrupt subroutine, all that is
needed is an address in REGISTER 0 and a return 1o tha msin
routine. However, the odd timing of the 28 machine cycles
before the first burst of DMA must be dealt with, and aiso
the microprocessor instruction and DMA, timing must be syn-
chronizad,

VIDEO SYNCHRONIZATION

To properly use the video generator, the microprocessor
timing must be synchronized with the video generator timing
to avoid “fitter” or tearing of the image on tha TV scresn,
Most instructions take two machine cycles for sxacution. The
clock that drives the cycling of the microprocessor also drives
the video generator. The synchronizstion of both micro-
processor and video generator is on aven cycles. DMA bursts
only occur when a current instruction finishea execution, at
that time the DMA proceeds, and the next instruction walts
until the DMA burst is over, As mentioned, DMA lasts 8

©0E0)

cycles and the time between bursts is 6 cycies. if no three
cycle instructions (such as a long branch) occur in the pro-
gram anywhere, one doesn’t have 10 worry about the syn-
chronization since, in this case, it would oscur naturally.
However, an important fact which hasn‘t been yet mentioned
anters the situation —the interrupt operation itseif is only one
cycle in durstion and one cycle must be “made up” to keep
in evan synchronization, This is the reason for the odd num-
ber of cycles until the first DMA burst after the interrupt.

The timing of 29 cycles from tha interrupt until DMA and
€ cycltes betwean DMA is due to the requirements far the TV
circuits and is outside of the scope of this article.

This completes the explanation of the overhead functions
of the subroutine. Now we can gat into its operation. As
mentioned, 29 machine cycles elapse before the first burst of
DMA. Wa shall sea how this timing is accounted for, how the
dizplay painter is hsndled, and how to make tha final exit
from the routine. The instructions from locations 0011
through 0014 account for 8 cycles. The NOP instructions in
locations 0015, 0016 and O 7 add B more cyeles for a total
s0 far of 17 cycles. In addition the NOP's provide the odd
cyele ra-synchronization required,

In locations 0018 to 001D, the refresh pointer gets loaded
with the beginning location of the data to be displayed. The
LDt} -instructions in 0018 and 001B load zero to D and the
PHi and PLO load the zero values into REGISTER 0. These
ingtructions add some synchronization {8 cycles). The vaiue
of zero is still feft in D and the next instruction redundantly
gets zero to D from the low end of REGISTER 0. The redun-
dancy is for the first time through this instruction only be-
cause this location {0D1E) is looped through a total of 32
times, The othar 31 times the value that tha GLO instruction
gets into D iz actually the address of tha naxt line of data for
the display. The reason for getting the address in this manner
is to have it availabla in D t0 keep on resetting it to REG{S-
TER O so the current line of data gets pointed to four times.
As you will recall, at each burst of DMA, REGISTER 0 guts
incramented by 8, thus resetting it in this manner ovarrides
the automatic incrementing and the goal of displaying each
string of data four timas is achieved.

The next instruction in location O01F is the SEX instruction
o REGISTER 2. REGISTER 2 is already the X pointer
REGISTER so this instruction is redundant. It is used for the
sama reasan as the timing NOP's: it provides 2 machine cycles
as required from the interrupt. The instructions in location
0O1E and 001F are doing double duty as far as timing Is con-
corned, they also are part of the 6 cycle timing required
between DMA bursts for the other loop-throughs until the
end of the video refresh period.

Referring to Figure 3, nots the DMA notation right after

location 001F. This is whan the first burst of DMA occurs in
the first time through the loop. As previousty stated, the
microprocessor actually stops executing the subroutine at
this point and becomes busy with DMA for 8 Machine cycles.
Next, the instruction in location 0020 is executed. Again, a
SEX instruction is executed, but for timing only. Location
0021 then executes 8 decrement REGISTER @ instruction.
At first glance this may seem peculiar, but it is ngeded for
maore than timing {2 cyclesh. 1t is actually needsd anly for tha
last loop-through where REGISTER Q will have been incra-
mentented to point to the beginning of the next page of
memory.

Dacrementing by one restores the pointer to the current
page and the next instruction in location 0022 corrects the
data location. The prior GLO in location 0015 provides the
the current data address in D and the PLO in location 0022
takes the D value and puts it into REGISTER O again. The
instructions in location 0023, 0024, and 0025 repeat the
activity of the locations 0020, 0021, and 0022 just as the
instructions in location 0026, 0027 and 0028 do. When we
reach the DMA after location 0028, it is the fourth DMA and
a string of eight memory data bytes has been displayed four
times, Now in location 0029, a test of the refresh status

Page 10

occurs, The instruction is a short branch if the status line 1 is
zaro, which it will be in the middtle of the refresh period. This
instruction takes 2 cycles, The branch is taken to the GLO
instryction at location 0D1E which provides the address of
the next bunch of data into D and adds 4 cycles, making,
with the BN1 isnstuction at location 0029, six cycles fo the
next DMA burst. The process, as you can see, will procesd
over and over until the test for status line 1 equal-to-zero fails
and the short branch instruction at location (02B is executed.
Thus, the refresh is over, the short branch is takan to location
O000F whare the LDXA instruction resides and the exit is
made. This concludes the subroutine analysis.

The next VIDEO GRAPHICS SOFTWARE section in
QUESTDATA will discuss tha main program and some im-
provements/changes that you can make.

NEW GRAPHICS PROGRAM BOOKLET
IS PUBLISHED BY PAUL C, MOEWS

There are a lot of interesting things you can do with
graphics with your basic 258 byte Super EIf or EIf |1,
This booklet shows you how to make your Eff into a
kaleidoscope pattern generator and tickertape-like
display system. You can also have a horsa race on
your video screen, The final two programs are a TV
stop watch and a TV clock; the ¢lock shows hours,
minutes, and seconds and is completely setable, The
booklet contains a discussion of graphic interrupt
routines along with the eight programs.

This exciting new booklet can be yours for only
$3.00 and 50 cents extra for postage and handling.
Please make checks payable to Quest Electornics.

BUG SQUASHER

The Ctose Encounters Theme in QUESTDATA Number 2 does
not repaat itself. Mr. James Nichalaen's original listing sent to us
was correct and did not include the erronecus 30 AC at location
CA. Substitution of the data 00 at location CA will correct this bug.
Mr. Nicholson has our sincere apology for this blunder. While we
are on the subject of music programs, we should mention that the
February Poputar Electronics 1978 music program will not work as
written under Super EIf MON{TOR control. What happens is that
the reglstors used by the program and the MONITOR's PC register
conflict,.. hence, < you will hear is one note when you attempt to
run the program under MONITOR control. The program uses R3
for a data register; this conflicts with the RCA recommandad use of
R3 as the program counter. Changing the program so that it uses
some other unused rogister for data storage wili solve the problem.
For axample, Change iocations AS, A8, AT to BF, 2F, 9F. All Guest
monitors set R3 as the PC whan executing programs. if you 30 68
in locations 00 and 1, and press reset, run; the music prograrm will
run since the MONITOR-program register conflict is avoided
altogether. Either solution to the problem will work,

Reader Sam Schmldt, an Cntario Canada COSMAC fan, writes:
“I hava found a small bug in the Videc Graphics Software Part |, In
iocatlons 40 and on ia the data for the words ‘Super EIf.' When | ran
it with my Super Eif | go an open U and an Fforthe E. In locations 78
to 7F the data reads; F0, 88, 80 F0, 80, F0, OF, 08, is should be F(, FB,
80, FO, 90, OF, OF, 08. | hope | hava bean a help.” You have been a
help, Sam. Quesdata thanks you. '

e

F-/\..c_f

-

©0E0)

INTERRUPT SUBROQUTINE

FIGURE 2

o INTERRUPT

7

-

- X_

PROVIDE FOR
RESTORING MAIN
PROGRAM WHEN
THROUGH.

¥

PROVIDE FOR
SYNCHROMIZATION
TIMING :

PROVIDE Anonsss}
FOR FIRST |
LOCATION !
]
J

OF DATA TO BE
DISPLAYED

GET ADDRESS OF
CURRENT
LINE FOR DISPLAY

B

[

- V -
N !
RESET CURRENT
DISPLAY ADDRESS f

RESET CURRENT
| DISPLAY ADDRESS

: :_____\L _

i DMA

—__ ;|/_,___

RESET CURRENT
DISPLAY ADDRESS

IS DISPLAY
DONE?

“RETURN

MAIN PROGRAM

REGISTERS I

&

Vi

PROVIDE BEGINNING
ADDRESS VALUES |
FOR THE OPERATING

MAIN PROGRAM l

RESET THE PROGRAM
COUNTER AND BEGIN

CONDITION FOR
/0

V

TURN ON VIDED

iN DEPRESSED
: ?

ADDRESS FOR DATA
KEYBOARD

J

LOAD ADDRESS
INTO DATA
POINTER

IN
DEPRESSED
7

IN
DEPRESSED
?

YES

TO NEXT
COLUMN

FIGURE 1

Page 11

VIDEO GRAPHICS

- FLOWCHARTS

' YES
GET STARTING 1 -

STORES DATA
INTO STACK

LOADING FROM HEX

CONTINUED
FROM PREVIOUS

¢ COLUMN

GET DATA FROM

—_—

MORE DATA INTO

CURRENT POINTER
LOCATION 1

¥

INCREMENT DATA
POINTER

HEX KEYBOARD }--

STORE DATA
IN STACK

e

Page 1:2

a .

. b

m (
o ANILNOYENS
EdNYHILNT FHL NI GNY ONVYNWCD 29 AHIAT Nt A3SO HIYLS FHL 804 Q3AHISIH IHY SNOILYIOT ISIHL
"8E00 O1 EEDD NGILYI0T WO KOILDIS SIHA NI SAYLS NO MON WOYJ WYHDOU
JHL LAOSY A3¥ILNI LSHIJ NOILYODT THL WOH2 SNILEVLS "SWIL v Ly AHINI N¥ ATSNONNILNOD "NIIHIS
AL IHL NO G3AY14SIT DNIIE S| AHOWIN 31 1HM AHOW3W OLNI ONLLIHM SMDTTY WYHDOHd IHL 40 NDiLDIS
_ $IHL 3YOJ3IYIHL 'gIASYITIL/A3SSIHIIA SI NOLLNG | FHE TWIL AHTAT INO A8 GIINVADY ATSOCNNILNGD §I
HOIHM SSIYAQY GALLNANI ATSNOIAILG FHL AR G3LVI0T AHOWIN OLNI QIYEISSNVHL MON $I NI Qval VIvd 3HL
NI Qv3H 51 OHVOSAI IHL WYL LNINI VEYA JHL MON
- "NIVOY Q355384 39 OL NOLLNG NI IHL YOS SLIVAM WYHO0N4 IHL
.zo_ﬁmmuwaxc_znmz.;m.r&nm?m..wamao._.zo.r_.:mz_m.._._.mo"_mts....:qmwozn_m_._._.

QUVOIATY XIH FHL HOUA AHOWIN OLN GIYILNI ATLNINDISEANS 38 OL $1'vAVD JUITHM |

40 .nm(._.m FHL ONILYI0T 04 a3sn ONY NI-OvEy JHIH m_ QUYOBATN X3IH FHL OLNI QIAIN SYM HIATLYHM

"ANOD3S H3d
SIWIL L9 40 m._.(_m FHL 1V WWHDOUd JHL 40 1534 JHL ONY mmu_._ LINHYILNI OL SLHYLS LINJHI0 030IA IHL
*1N35 Si ONYRINOD (69) IdNI SHL JONO *3LON "0a553Hd30 St NOLENE § IHL TELNN FHIH SAVLS WYHDOH] IHL

"TUYMOHYTH DICIA NO NHML OF GNYARNCD LN4ALNGD ONY {01} LRd LAY LMNdNE HO A 4N 135

AV S| WYHDOUd NIYIH GHL OL NYN13Y JHL 0S5 LT W00 §1 AvdSIT OJAiA IHL MON

TATIYLOL SAWIL ZE 3OV ST NOLLDIS SIHE HONOYHL NOELNIIXT 3HL "8Z00 HONOWHL 3100 NOELYIOT WOHL S431S
FHL L¥3d42H ONV 3100 NOLLYD0T OL HIvd 09 "3HOJIHIHL "1IA QIAVILSIQ ¥AivD JO L3S TIN4 IHL IAVH LON
$30:3 NI3HDS AL IHL NIHL .0, TTILS 41 "IAVIN S1 {133) INIT SNULVLS JYVMOYYH DIGIA IHL NO MDIHD ¥ 3d3H
3100 NOILYIOT LY 318V1IVAY 3AVHN

$SIHAOY IHL SAWIL MNOL GIAY ST ONIFE VLWA J0O NOHD IHL SO SSIHTAY ANTHEND IHL HLIMO HIL5ID3Y
IQAQEd ATSNOMANILNOGD S.07d IHL "ABONWIW 40 3DVd LNIHEND IHL WOH L JINIVLEO 38 SAYMTY TTIM VLVD
FHL LVYHL IHNSSY ATSNONNILNOD 5,030 JHL "HINAS SNIWIL TOHLNOD OL S.d0N ATdWIS HY SGNYIHINGD X35 IHL

SINIL ¥MNOd OIAVILS10 §1 vV 40 dNoHD HOY3 LVHL 05 S3NIL 334 HL SHNJ20

1534 AHL 'TAAAY 14510 38 O wiWD 40 (804} 55IHOAY LNIMMD IHE S13S3H INLLNOYENS IHL 20 NOtLD3S SiHL
D3S W Lpr X 8 HOH NdW 3HL SIOLS ATTYALIY LSHNEA SEHL ‘NIIHOIS IHL NO MILLIHM S) INIT 3NG

'LSYUNE HOVE LV 'NITWIS AL IHL NO DNISYIddY YIVC IHL 5301A0H HIIHM VA 40 LSHNE ¥ SUNJIS0 AH3AH
100 ONY 5100 '5L00 NOILLYDO0T Ni S.dON JHL SW NOSYIH IWYS JHL HOS Q38N dO-GN ¥ ATTWNLIY St SIHL
Q3AV14510 38 OL ¥LYQA 40 dNOHD EX3IN FHL J0 SSIYOAY LNIHUND IHL ITEVIVAY DAVA

GIAVIISIU 38 OL YLV 40 NOILYIOT LSHI4 404 SSIHAQY IHAOHd

FHYMOUYH D301A HLIM NOLLYZINOMHINAS IWLL NI OMId33X HOJ OIHINDIH SFT1TAD NdW 38N

£EW 01 of

L+id

L+¥H Q=1 195
pedAax=("XIN 393
passaid N| Joy e
PosE@(Rd N| 0} HEM

edhay=0'yy "0 "KW 146
passaid] 405 12
A winl

=X
{L=F=53) tumes o ob

{0=13} usai1 01 off

L0y

=00y
2]

(B+04) S919A0 YING &
04

{B+0W} 591942 YNQ B
oou=a

Mo gd azijenim-a1
{11d ysenei) 0000=0H

yBiy nd az(jeRIuL-a)

{53134z §) Aejap do-ou

TW BQ anes

1-ZY

(@aa0av 335} I @ "X mes

HILYT SINIVA TYNIDIHO FHOLSIH OL SHIALSIOTE d OGNV X 'Q IHL IAYS O SOHLINW ¥ S3TAOHd 1-Z4

440 1437 LF IHIHM HOLETHILO ANMNILNDD
TR INILNOH NIYW 3HL LYHL 08 {SHILSIDAE d ONY X "0 IHL "2 NdiN IHL 30 NOILYNOLS3Y B0 3TIAOHd

14T "dX a1oasar
1+ZY 'Q 01581

azoo 51 5834AAY LX3N :ILON (NIVIN O10D)=d

413 Y34NS IHL

{LdNUYIINH=0'1 Y
DIDVIS=0ZY

{NIVIN)=0'EY

NI IHYMOHYH 0301A
HOJ g3YIN03IY S5V
HILSOIY IHL HOd
SINIVA S53HGOV
DONINNID38 IAMAOHd

NQLLINNS

00=L"t" "L'EH

00=tZH 'L'1Y

SLNIWW0D

a3sn LN

@ us
¥} NI
(¥} HES
wdN1
¥Ng u
va
oy 01d h
PN

@ wNg

I dNE
(2] Xas

@ 43
@ 1NE

{00) O'td
0 03a
{2} %38

o 0d
{01 930
2} xas

00} 014
D} 530
Z) X3s

Z) Xas
0'0) 01D
{00) 01

11

134
¥xal
£d38
oLhOd -
1
070
i
0¢) O
[[e]
(L) tHY
(LE) IHd
{1'Z) 1Hd
(L1} IHd
{L0) tHD

EE

3T

40

31

ao

oo

33

4€

az

og
¥l

3£
i£
L
a9

E

3
og

5]
]

DRINRIVRT

BR33ILERESD

84
e
£d

24

3]
o6

JIU/NINOWANW YE/ViVD 300D

ONILSFT WYYDOUd AVIdSIG OITIA

700

8200

BZOO
L200

S200
P00
€200
700
Lzoe
0Za0

Ji00
3100

1000
0000

NOILLY2O

£ 3HNDI2

NIV

HSIHSIH

®

“LNT

LEIJEE] ®
®

i4vis
RE L E]

[Answer to L.A P.D. stoplight project, page 5]

Here is one possible way to make a flashing light for
the City of Los Angeles, Note that the delay is made
into ene operation. We can do this since we have
studied its inner working on page 4 and 5. This is how

* 9 systems analyst might black out the delay operation.
Using the tool of flowcharting, given by James C.
. Nicholson (given on pg: 2 and 3), you are prepared fo
‘explode this block into its compenent parts. The-next
‘WHAT THE MACHINE IS THINKING column will

cover memory organization and pointer registers,

LOC, GODE MNEM.
0 78 SEQ - 78
01 F8 i .
o F8 TURN ON Q
03 9 PLO
04 Bo PHI
05 29 DEC Y
06 99 GHI i
7 3a BNZ
o8 on S DELAY
09 39 ENQ
CA [1]4]
. 0B 7a REQ
0oC 30 BR
aD o1
.i
. TA
TURN QOFE
GO TO
DELAY
bl B T Tl T g — ——-——-n‘-——-——-p-———
QUESTDATA
" P.0. Box 4430

— e o — — o —

—_—— e -

Santa Clara, CA 95054

Payment.
O Check or Money Order Enclosed
Made payable to Quest Electronics

L — —— "

A one year subscription to QUESTDATA, the monthly publication devoted
{Add 36.00 for alrmail postage to all foreign countries exc‘epr Canada

Your comments are always welcome and appreciated. We want to be

Page 13

MUSIC AND GAMES FOR BASIC ELF

A new booklet entitled Programs for the COS-
MAC Elf—-Music and Games is available, The
author, Paul C, Moews, has written programs for
“Morra'’ (a match wits with the computer guessing
game), Bridg-it, reaction time tester, tic-tac-toe,
music programs, monitor type subroutines and
more. The 45 page booklet was writtan for. the
basic 266 byte EIf but getting the programs to
work in expanded memory requires nothing
more than initializing the high order addresses
to 00. The explanation of sach program is good
and the programs ars documented. The booklet
can be ordered by sending $2.50 plus 50¢ for
shipping to QUEST Electronics.

Back issues of QUESTDATA are available {beginn-
ing with issue number 1 at $1.00 each. Customers in
foreign countries, other than Canada and Mexico,
please send 50 cents additional for airmail with each
issue ordered. '

entirely to the COSMAC 1802 is 312. .
and Mexico.}

your 1802's best friend.

NAME
O Master Charge No.ot
0 Bank Americard No. _... . _. '
~OvisaCardNo. _____ ____ .. ADDRESS
Expiratian Date; .
Signature CITY STATE ZIP

e e o b

©0E0)

POCKET CARD LISTS ALL COSMAC CODE

HEX-ASCH TABLE
00 NUL 21 ! 42 B 63 ¢
0t SOH 2z 43 C B4 d
02 S8TX 23 # 4 0 85 o
03 ETX 24 08 45 E 66 f
04 EOT 26 % 46 F 87 g
05 ENQ % & a7 G 68 h
06 ACK 27 ¢ 48 H 69
07 BEL b I 49 | 8A
08 88 20 FY RN BB &
0% HT T 48 K 8C |
0A | LF 2B . ac oL 60 m
0B VT c - aD M 6E n
0C FF o - dE N 6F o
on cR 2E . F O wop -
OF S0 oF 50 P 7t oq
OF 81 a o0 51 g 7?0
10 ODLE 31 52 R 3 s
11 oc 2 2z 53 S 4t
12 DC2 33 2 sS4 T 5w
13 DCa 34 4 55 U 7 v
14 DG4 3% 5 56V 7w
15 NAK 3 6 7 W 8 x
16 SYN a7 55 X 9y
17 ETB a8 8 58 Y A 2
18 CAN 38 9 SA Z B
19 EM 34 . 5B e
1A 8UB - | 5C m
1B ESC ic - 50 |
1IC FS klo} 5E Y 7E
1 GS 3E - 5F — {(~—} 7 DEL
1E RS IF 7 60
FUS 40 61 s
.20 SP _ 41 A .6 b

{ALT MODE)

{RUB OUT)

1800 CRIGS

MICROPROCESSOR POCKET GUIDE

FEATURES

PIN CONHGURATIQN
* Instruction Cyele Time 2.5 - 3.76 . -

s ot 6.4 MHz, :_3:?:1
» 8 &it Parzlisl Dara Organization a nun?‘- ,
* Mamary Addressing to 65,536 e e
Byles [winE
*0On Chip Direet Memory Access 2 res I
= s ey
+15 x 18 Ganaral Purpose =L T
Flegisier Matrix F 7 o
*Diract Memory to Paripheral SLTIMAy K,
Transter on 1/O Instructions T e
+TTL Compatibla s
#Single Phasa Clack, Singla i
Valtage Supply : ,_:'J Ve
=81 lastructions B See o
7B 1 EFD " fans
JHEJERR

This shirt pocket data card gives all the COSMAC
microcomputer codes, functional diagrams, and in-
formation you need to get your computer to obey
your every command. The card gives you the con-.
vienience of having the mnemonics and operation
codes at your fingertips. To have this card for your
COSMAC, send 50 cents to cover postage and hand.
ling to QUEST Electronics. No longer will you have to
thumb through bulky data books in search of the
code to feed your hungry 1802,

Paga_ 14

HOW TO SUBMIT YOUR PROGRAMMING MASTERPIECE TO QUESTDATA

Your resdership regponse to QUESTDATA has been fantas-
tic. Keep tha interesting applications and programs coming.
When sending QUESTDATA your programming.gem; docu-
ment your masterpiece with as much information ss you can
think up. It is important for readers to see 8 flowchart so
they will know how your program was done and bes able to
modify it, if they so wish, Tell us the story of how you
thought up your program. Ralate sit of its copabilities with as
many postible applications as you can. If at all possible type
your text and doublaspace it on 8% x 11 white paper. It is
‘Wise to place your name and address in the upper right corner
of all shesets submitted.

QUESTDATA. will also be publishing a letters column in
the future. What kinds of things would you like to ses your
1802 perform? Send us {in letter or article form) your ideas
and daydreams that you hava about tha 1802. Cartaln asreas
that already appear to have high reader intsrost are: Music,
games, video graphics, programming tricks and meath sub-
routines. Modificataions and improvements to existing pro-
grams are welcome. So —~ksep the imaginative work and in-
toresting ideas flowing.

QUEST
Electronics

Permit No. 549

Santa Clara, CA

COSRIAC CLUB COSMAC CLUB COSMAC CLUB COSKAC CLUB COSMAC CLUB COSMAC CLUB COSMAC. CLUB

BULK RATE
L5, Postaga Paid

