

CDP1821C/3

High-Reliability CMOS 1024-Word x 1-Bit Static RAM

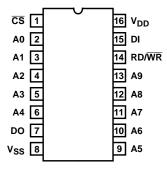
March 1997

Features

- Static CMOS Silicon-On-Sapphire Circuitry CD4000-Series Compatible
- Compatible with CDP1800-Series Microprocessors at **Maximum Speed**
- Fast Access Time. 100ns Typ. at V_{DD} = 5V
- Single Voltage Supply
- . No Precharge or External Clocks Required
- · Low Quiescent and Operating Power
- Separate Data Inputs and Outputs
- Memory Retention for Standby Battery Voltage Down to 2V at +25°C
- Latch-Up-Free Transient-Radiation Tolerance

Ordering Information

PACKAGE	TEMP. RANGE	PART NUMBER	PKG. NO.
SBDIP	-55°C to +125°C	CDP1821CD3	D16.3


Description

The CDP1821C/3 is a 1024-word x 1-bit CMOS silicon-on-sapphire (SOS), fully static, random-access memory designed for use in CDP1800 microprocessor systems. This device has a recommended operating voltage range of 4V to 6.5V.


The output state of the CDP1821C/3 is a function of the input address and chip-select states only. Valid data will appear at the output in one access time following the latest address change to a selected chip. After valid data appears, the address may be changed immediately. It is not necessary to clock the chip-select input or any other input terminal for fully static operation; therefore the chip-select input may be used as an additional address input. When the device is in an unselected state ($\overline{CS} = 1$), the internal write circuitry and output sense amplifier are disabled. This feature allows the three-state data outputs from many arrays to be OR-tied to a common bus for easy memory expansion.

Pinout

CDP1821C/3 (SBDIP) **TOP VIEW**

Functional Block Diagram

OPERATIONAL MODES

	INPUTS		OUTPUT
MODE	READ/WRITE CHIP-SELECT R/W CS		DATA OUTPUT DO
Standby	Х	1	High Impedance
Write	0	0	High Impedance
Read	1	0	Contents of Addressed Call

X = Don't Care Logic 1 = High Logic 0 = Low

CDP1821C/3

Absolute Maximum Ratings

DC Supply Voltage Range, (V_{DD}) (All Voltages Referenced to VSS Terminal).....-0.5V to +7V Input Voltage Range, All Inputs-0.5V to V_{DD} +0.5V DC Input Current, Any One Input.....±10mA

Thermal Information

Thermal Resistance (Typical)	θ _{JA} (°C/W)	θ_{JC} ($^{\circ}C/W$)
SBDIP Package	75	20
Maximum Operating Temperature Range	$(T_A) \dots -55^{C}$	C to +125°C
Maximum Storage Temperature Range (T	65 ^c	°C to +150°C
Maximum Lead Temperature (During Solo	dering)	+265 ^o C
Maximum Junction Temperature		+150 ^o C

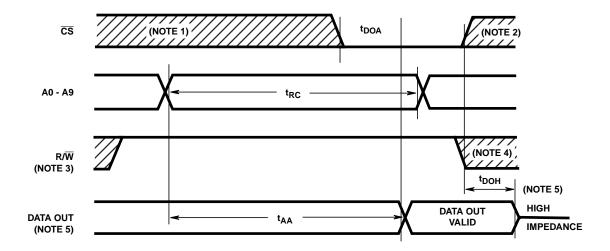
 $\textbf{Recommended Operating Conditions} \quad \textbf{T}_{A} = \textbf{Full Package-Temperature Range}. \ \textbf{For maximum reliability, nominal operating constraints} \\ \textbf{T}_{A} = \textbf{Full Package-Temperature Range}. \\ \textbf{T}_{A} = \textbf{T}_{A} = \textbf{T}_{A} + \textbf{$ ditions should be selected so that operation is always within the following ranges:

	CDP18		
PARAMETER	MIN	MAX	UNITS
DC Operating Voltage Range	4	6.5	V
Input Voltage Range	V _{SS}	V _{DD}	V

Static Electrical Specifications $V_{DD} = 5V \pm 5\%$

			-55°C, +25°C		+12	5°C	
PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	MIN	MAX	UNITS
Quiescent Device Current (Note 1)	I _{DD}	$V_{IN} = 0V \text{ or } V_{DD}$	-	260	-	1000	μΑ
Output Low Drive (Sink) Current (Note 1)	l _{OL}	V _{OUT} = 0.4V	2.7	-	1.6	-	mA
Output High Drive (Source) Current (Note 1)	I _{ОН}	$V_{OUT} = V_{DD} - 0.4V$	-1.3	-	-0.8	-	mA
Output Voltage Low-Level	V _{OL}	-	-	0.1	-	0.5	V
Output Voltage High-Level	Voн	-	V _{DD} -0.1	-	V _{DD} -0.5	-	V
Input Low Voltage	V _{IL}	-	-	0.3 V _{DD}	-	0.3 V _{DD}	V
Input High Voltage	V _{IH}	-	0.7 V _{DD}	-	0.7 V _{DD}	-	V
Input Current (Note 1)	I _{IN}	$V_{IN} = 0V \text{ or } V_{DD}$	-	2.6	-	10	μΑ
Three-State Output Leakage Current (Note 1)	lout	$V_{IN} = 0V \text{ or } V_{DD}$	-	2.6	-	10	μΑ
Operating Current (Note 2)	I _{DD1}	-	-	5	-	10	mA
Input Capacitance	C _{IN}	-	-	7.5	-	7.5	pF
Output Capacitance	C _{OUT}	-	-	15	-	15	pF

NOTES:


- 1. Limits designate 100% testing. All other limits are designer's parameters under given test conditions and do not represent 100% testing
- 2. Measured with $1\mu s$ read-cycle time and outputs floating.

Read Cycle Dynamic Electrical Specifications t_R , t_F = 10ns, C_L = 50pF

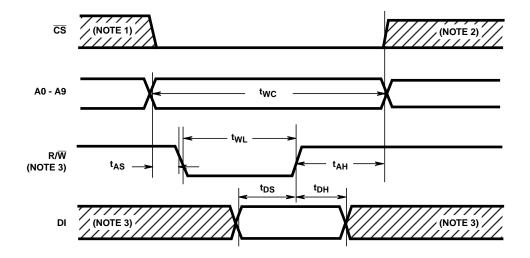
		V _{DD}	-55 ^o C,	+25°C	+12	5°C	
PARAMETER	SYMBOL	(V)	MIN	MAX	MIN	MAX	UNITS
Data Access Time (Note 1)	t _{DA}	5	-	190	-	255	ns
Read Cycle Time	t _{RC}	5	190	-	255	-	ns
Output Enable Time	t _{EN}	5	65	-	90	-	ns
Output Disable Time	t _{DIS}	5	-	65	-	90	ns

NOTE:

1. 100% testing. All other limits are designer's parameters under given test conditions and do not represent 100% testing.

NOTES:

- 1. Chip-Select (\overline{CS}) permitted to change from high to low level or remain low on a selected device.
- 2. Chip-Select $(\overline{\text{CS}})$ permitted to change from low to high level or remain low.
- 3. Read/Write (R/\overline{W}) must be at a high level during all address transitions.
- 4. Don't care.
- 5. Data-Out (DO) is a high impedance within t_{DIS} ns after the falling edge of R/\overline{W} or the rising edge of \overline{CS} .


FIGURE 1. READ CYCLE TIMING DIAGRAM

Write Cycle Dynamic Electrical Specifications t_R , t_F = 10ns, C_L = 50pF

		V _{DD}	-55 ^o C,	+25°C	+12	5°C	
PARAMETER	SYMBOL	(V)	MIN	MAX	MIN	MAX	UNITS
Write Cycle Time	t _{WC}	5	300	-	420	-	ns
Address Setup Time (Note 1)	t _{AS}	5	60	-	84	-	ns
Address Hold Time (Note1)	t _{AH}	5	130	-	180	-	ns
Input Data Setup Time (Note 1)	t _{DS}	5	90	-	125	-	ns
Input Data Hold Time (Note 1)	t _{DH}	5	60	-	84	-	ns
Read/Write Pulse Width Low (Note 1)	t _{WL}	5	110	-	155	-	ns

NOTE:

1. 100% testing. All other limits are designer's parameters under given test conditions and do not represent 100% testing.

NOTES:

- 1. Chip-Select (\overline{CS}) permitted to change from high to low level or remain low on a selected device.
- 2. Chip-Select (\overline{CS}) permitted to change from low to high level or remain low.
- 3. Don't care.

FIGURE 2. WRITE CYCLE TIMING DIAGRAM

Data Retention Specifications

		TEST CO	NDITIONS	-55 ^o C,	+25°C	+12	5°C	
PARAMETER	SYMBOL	V _{DR} (V)	V _{DD} (V)	MIN	MAX	MIN	MAX	UNITS
Minimum Data Retention Voltage (Note 1)	V _{DD}	-	-	-	2	-	2.5	V
Data Retention Quiescent Current (Note 1)	I _{DD}	2	-	-	50	-	200	μΑ
Chip Deselect to Data Retention Time	tCDR	-	5	450	-	650	-	ns
Recovery to Normal Operation Time	t _{RC}	-	5	450	-	650	-	ns

NOTE:

1. 100% testing. All other limits are designer's parameters under given test conditions and do not represent 100% testing

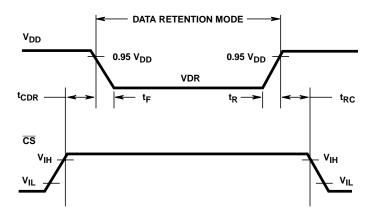
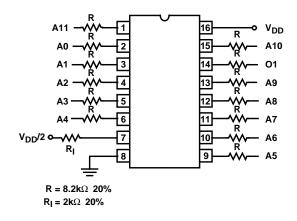
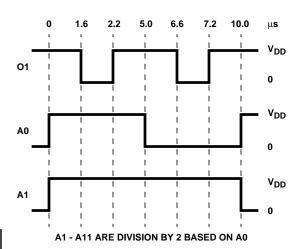




FIGURE 3. LOW $\mbox{V}_{\mbox{\scriptsize DD}}$ data retention waveforms and timing diagram

Burn-In Circuit

PACKAGE	V _{DD}	TEMPERATURE	DURATION
D	7V	+125 ⁰ C	160 Hrs.

FIGURE 4. DYNAMIC/OPERATING BURN-IN CIRCUIT AND TIMING DIAGRAM

CDP1821C/3

		bled and tested under ISO9000 quality systems of	
notice. Accordingly, the reader is can and reliable. However, no responsible	utioned to verify that data sheets are current lity is assumed by Intersil or its subsidiaries f	right to make changes in circuit design and/or specifications at before placing orders. Information furnished by Intersil is believe or its use; nor for any infringements of patents or other rights of the ny patent or patent rights of Intersil or its subsidiaries.	d to be accurate
	<u> </u>	ts products, see web site http://www.intersil.com	
Sales Office Headq			
NORTH AMERICA Intersil Corporation	EUROPE Intersil SA	ASIA Intersil (Taiwan) Ltd.	

P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000

FAX: (407) 724-7240

Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05

Taiwan Limited 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029