

COSMAC Microprocessor

Features:

- Typical instruction fetch-execute time of 2.5 or $3.75 \mu \mathrm{~s}$ at $V_{D D}=10 \mathrm{~V}$; 5.0 or $7.5 \mu \mathrm{~s}$ at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$
- Static silicon-gate CMOS circuitry - no minimum clock frequency
- Operating temperature range: -55 to $+125^{\circ} \mathrm{C}$ (CDP1802D, CDP1802CD); -40 to $+85^{\circ} \mathrm{C}$ (CDP1802E, CDP1802CE)
- High noise immunity, wide operating-voltage range
- Single voltage supply Low power
- Single-phase clock; optional on-chip TTL compatible crystal-controlled oscillator
- On-chip DMA
- Simple control of reset, run, and pause
- 8-bit parallel organization with bidirectional data bus
- Any combination of standard RAM and ROM
- Memory addressing up to 65,536 bytes
- Flexible programmed I/O mode

The RCA-CDP1802 is an LSI COS/MOS 8 -bit register-oriented central-processing unit (CPU) designed for use as a general-pufpose computing or control element in a wide range of stored-program systems or products.

The CDP1802 includes all of the circuits required for fetching, interpreting, and executing instructions which have been stored in standard types of memories. Extensive input/output (I/O) control features are also provided to facilitate system design.

The COSMAC architecture is designed with emphasis on the total microcomputer system as an integral entity so that systems having maximum flexibility and minimum cost can be realized. The COSMAC CPU also provides a synchronous interface to memories and external controllers for I/O devices, and minimizes the cost of interface

- Program interrupt mode
- Four 1/O flag inputs directly tested by branch instructions
- Programmable output port
- 91 easy-to-use instructions
- 16×16 matrix of registers for use as multiple program counters, data pointers, or data registers
controllers. Further, the 1/O interface is capable of supporting devices operating in polled, interrupt-driven, or direct memoryaccess modes.
The CDP1802 and CDP1802C are functionally identical. They differ in that the CDP 1802 has a recommended operating voltage range of $4-10.5$ volts, and the CDP1802C, a recommended operating voltage range of 4-6.5 volts. These types are supplied in $40-$ lead dual-in-line ceramic packages (D-suffix). and 40-lead dual-in-line plastic packages (E suffix).

Fig. 1 - Typical CDP1802 microprocessor system.

[^0]Information furnished by RCA is believed to be accurate and reliable. However, no responsibility is assumed by RCA for its use no for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of RCA.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE RANGE, (VDD)

(Voltage referenced to $\mathrm{V}_{\text {SS }}{ }^{\text {Terminal) }}$

$$
\text { CDP } 1802 \text {. } 05 \text { to }+11 \text { 1 }
$$

CDP1802C
-0.5 to +7
INPUT VOLTAGE RANGE, ALL INPUTS
DC INPUT CURRENT, ANY ONE INPUT -0.5 to $V_{D D}{ }^{+0.5}$ '

POWER DISSIPATION PER PACKAGE (P ${ }_{D}$):
For $T_{A}=-40$ to $+60^{\circ} \mathrm{C}$ (PACKAGE TYPE E).
$\pm 10 \mathrm{~m}$

For $T_{A}=+60$ to $+85^{\circ} \mathrm{C}$ (PACKAGE TYPE E)
Derate Linearly at $12 \mathrm{~mW} / \mathrm{C}$ to 200 m
For $T_{A}=-55$ to $+100^{\circ} \mathrm{C}$ (PACKAGE TYPE D)
For $T_{A}=+100$ to $+125^{\circ} \mathrm{C}$ (PACKAGE TYPE D)
.500 ml
Derate Linearly at $\mathbf{1 2 ~ m W / ~}{ }^{\circ} \mathrm{C}$ to 200 ml

DEVICE DISSIPATION PER OUTPUT TRANSISTOR
For $T_{A}=F U L L$ PACKAGE-TEMPERATURE RANGE (All Package Types) 100 ml OPERATING-TEMPERATURE RANGE (T_{A}):

PACKAGE TYPE D
-55 to $+125^{\circ}$ (
PACKAGE TYPE E . -40 to $+85^{\circ} \mathrm{C}$
StORAGE TEMPERATURE RANGE ($T_{\text {ste }}$)
-65 to $+150^{\circ} \mathrm{C}$
LEAD TEMPERATURE (DURING SOLDERING):
At distance $1 / 16 \pm 1 / 32$ inch $(1.59 \pm 0.79 \mathrm{~mm})$ from case for 10 s max. $+265^{\circ} \mathrm{C}$
STATIC ELECTRICAL CHARACTERISTICS at $T_{A}=-40$ to $+85^{\circ} \mathrm{C}$, except as noted.

'Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

STATIC ELECTRICAL CHARACTERISTICS at $T_{A}=-40$ to $+85^{\circ} \mathrm{C}$, except as noted.

CHARACTERISTIC	CONDITIONS			LIMITS						$\begin{aligned} & U \\ & \mathbf{N} \\ & \mathbf{I} \\ & \mathbf{T} \\ & \mathbf{S} \end{aligned}$
	v_{0} (V)	$V_{I N}$(V)	$\begin{gathered} \mathrm{v}_{\mathrm{CC}}, \\ \mathrm{v}_{\mathrm{DD}} \\ \text { (V) } \end{gathered}$	CDP1802D CDP1802E			CDP1802CD CDP1802CE			
				Min.	Typ.*	Max.	Min.	Typ.*	Max.	
3-State Output Leakage Current IOUT	0,5	0,5	5	-	$\pm 10^{-4}$	± 1	-	$\pm 10^{-4}$	± 1	A
	0,10	0,10	10	-	$\pm 10^{-4}$	± 1	-	-	-	
Minimum Data Retention Voltage, $V_{D R}$	$V_{D D}=V_{D R}$			-	2	2.4	-	2	2.4	V
Data Retention Current, IDR	$V_{D D}=2.4 \mathrm{~V}$			-	0.01	1	-	0.5	5	$\mu \mathrm{A}$

${ }^{*}$ Typical values are for $T_{A}=25^{\circ} \mathrm{C}$.
RECOMMENDED OPERATING CONDITIONS at $\mathbf{T}_{A}=-40$ to $+85^{\circ} \mathrm{C}$ Unless Otherwise Specified For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	CONDITIONS		LIMITS		UNITS
	$\begin{aligned} & v_{\text {cc }}{ }^{1} \\ & (\mathrm{~V}) \end{aligned}$	VDD (V)	CDP1802D CDP1802E	CDP1802CD CDP1802CE	
Supply-Voltage Range	-	-	4 to 10.5	4 to 6.5	V
Input Voltage Range	-	-	V_{SS} to V_{CC}	$\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\text {CC }}$	V
Maximum Clock Input Rise or Fall Time, $\quad t_{r}$ or t_{f}	4-10.5	4-10.5	1	1	$\mu \mathrm{s}$
Instruction Time ${ }^{2}$ (See Fig. 8)	5	5	6.4	6.4	$\mu \mathrm{s}$
	5	10	5.1	-	
	10	10	3.2	-	
Maximum DMA Transfer Rate	5	5	312	312	KBytes/sec
	5	10	390	-	
	10	10	625	-	
Maximum Clock Input Frequency,${ }^{\mathrm{f}} \mathrm{CLOCK}^{3}$	5	5	DC - 2.5	DC-2.5	MHz
	5	10	DC-3.1	-	
	10	10	DC-5	-	

NOTES:

1: $V_{C C} \leqslant V_{D D}$; for CDP1802C, $V_{D D}=V_{C C}=5$ volts.
2. Equals 2 machine cycles - one Fetch and one Execute operation for all instructions except Long Branch and

Long Skip, which require 3 machine cycles - one Fetch and two Execute operations.
3. Load Capacitance $\left(C_{L}\right)=\mathbf{5 0} \mathrm{pF}$.

92cs-31863
Fig. 2 - Minimum output high (source) current characteristics.

Fig. 3 - Minimum output low (sink) current characteristics.

Fig. 4 - Typical transistion time vs. Ioad capacitance.

Fig. 6 - Typical maximum clock frequency as a function of temperature.

NOTE: ANY OUTPUT EXCEPT XTAL
Fig. 5 - Typical change in propagation delay as a function of a change in load capacitance.

NOTES
92Cs-29549
IDLE: "OO"AT M(OOOO) BRANCH = " 3707 "ATM(8107) $\quad C_{L}=50$ pF

> Fig. 7 - Typical power dissipation as a function of clock frequency for BRANCH instruction and IDLE instruction for CDP1802.

Fig. 8 - Required memory system address time as a function of instruction time.

NOTE
TEST ANY ONE INPUT WITH ALL OTHER
INPUTS AT "NOISE" VOLTAGE LEVELSS.
Fig. 9 - Noise immunity test circuit.

92cs-29608
Fig. 11 - Input leakage current test circuit.

Fig. 10 - Quiescent-device leakage current test circuit.

Fig. 12 - Three-state output leakage (data bus) test circuit.

Fig. 13 - Timing waveforms.

File No. 1023 \qquad CDP1802, CDP1802C

DYNAMIC ELECTRICAL CHARACTERISTICS at $\mathrm{T}_{\mathrm{A}}=-\mathbf{4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$, $\mathrm{V}_{\mathrm{DD}} \pm 5 \%$, except as noted.

CHARACTERISTIC	$V_{C C}$ (V)	$V_{D D}$ (V)	LIMITS		UNITS
			Typ.*	Max.	
Propagation Delay Time, $\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\mathrm{PHL}}$: Clock to TPA, TPB	5	5	300	450	
	5	10	250	350	ns
	10	10	150	200	
Clock-to-Memory High-Address Byte	5	5	900	1350	
	5	10	500	750	ns
	10	10	400	600	
Clock-to-Memory Low-Address Byte	5	5	350	500	
	5	10	250	375	ns
	10	10	150	250	
Clock to $\overline{M R D}, \mathrm{t}_{\text {PLH }}$	5	5	300	450	
	5	10	250	350	ns
	10	10	150	200	
Clock to $\overline{M R D}, \mathrm{t}_{\text {PHL }}$	5	5	300	450	
	5	10	250	350	ns
	10	10	150	200	
Clock to $\overline{\text { MWR }}$, $\mathrm{t}_{\text {PLH }},{ }^{\text {t PHL }}$	5	5	300	450	
	5	10	250	350	ns
	10	10	150	200	
Clock to (CPU DATA to BUS)	5	5	450	650	
	5	10	350	450	ns
	10	10	200	300	
Clock to State Code	5	5	500	750	
	5	10	350	450	ns
	10	10	250	300	
Clock to Q	5	5	350	550	
	5	10	250	400	ns
	10	10	150	250	
Clock to N(0-2), ${ }^{\text {P }}$ PLH	5	5	550	800	
	5	10	350	500	ns
	10	10	250	350	
Minimum Setup and Hold Times, ${ }^{\text {t }}$ SU, ${ }^{\text {t }}{ }^{\text {T }}$ Data Set Up	5	5	-30	0	
	5	10	-25	10	
	10	10	-10	20	ns
Data Hold	5	5	200	300	
	5	10	125	200	
	10	10	100	150	
$\overline{\text { DMA }}$ Setup	5	5	-75	0	ns
	5	10	-50	0	
	10	10	-25	0	
$\overline{\text { DMA }}$ Hold	5	5	150	250	
	5	10	100	200	
	10	10	75	125	

[^1]DYNAMIC ELECTRICAL CHARACTERISTICS (cont'd)

CHARACTERISTIC	$\begin{aligned} & V_{\text {cc }} \\ & (\mathrm{V}) \end{aligned}$	$v_{D D}$(V)	LIMITS		UNITS
			Typ.	Max.	
Minimum Setup and Hold Times, ${ }^{\mathrm{t}} \mathrm{SU},{ }^{\mathrm{t}} \mathrm{H}$ Interrupt Setup	5	5	-75	0	ns
	5	10	-50	0	
	10	10	-25	0	
Interrupt Hold	5	5	150	250	
	5	10	100	200	
	10	10	75	125	
$\overline{\text { WAIT Setup }}$	5	5	-15	0	ns
	5	10	-25	25	
	10	10	0	50	
	5	5	-30	0	ns
$\overline{\text { EF1-4 Setup }}$	5	10	-20	0	
	10	10	-10	0	
$\overline{\text { EF1-4 Hold }}$	5	5	150	250	
	5	10	100	200	
	10	10	75	125	
Minimum Pulse Width, ${ }^{\text {W }}$ WL	5	5	300	600	ns
$\overline{\text { CLEAR Pulse Width }}$	5	10	200	400	
	10	10	150	300	
$\overline{\text { CLOCK }}$ Pulse Width, ${ }^{\text {t }}$ L	5	5	150	200	ns
	5	10	120	160	
	10	10	75	100	
Typical Total Power Dissipation $\quad \mathrm{f}=2 \mathrm{MHz}$	5	5	4	-	mW
Idle "00" at $\mathrm{M}(0000), \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \quad \mathrm{f}=4 \mathrm{MHz}$	10	10	30	-	mW
Effective Input Capacitance, C_{IN} Any Input			5	-	pF
Effective 3-State Terminal Capacitance DATA BUS			7.5	-	pF

- Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal $V_{D D}$.
∇ Maximum limits of minimum characteristics are the values above which all devices function.

TIMING SPECIFICATIONS as a function of $T\left(T=1 / f_{C L O C K}\right)$ at $T_{A}=-40$ to $+85^{\circ} \mathrm{C}$.

- Typical values are for $T_{A}=25^{\circ} \mathrm{C}$.

ARCHITECTURE

The COSMAC block diagram is shown in Fig. 14. The principal feature of this system is a register array (R) consisting of sixteen 16 bit scratchpad registers. Individual registers in the array (R) are designated (selected) by a 4 -bit binary code from one of the 4 -bit registers labeled N, P, and X. The contents of any register can be directed to any one of the following three paths:

1. the external memory (multiplexed, higher-order byte first, on to 8 memory address lines);
2. the D register (either of the two bytes can be gated to D):
3. the increment/decrement circuit where it is increased or decreased by one and stored back in the selected 16 -bit register.
The three paths, depending on the nature of the instruction, may operate independently or in various combinations in the same machine cycle.
With two exceptions, COSMAC instructions consist of two 8 -clock-pulse machine cycles. The first cycle is the fetch cycle, and the second-and third, if necessary-are execute cycles. During the fetch cycle the four bits in the P designator select one of the 16 registers $\mathbf{R}(\mathbf{P})$ as the current program counter. The selected register $R(P)$ contains the address of the memory location from which the instruc-
tion is to be fetched. When the instruction is read out from the memory, the higher-order 4 bits of the instruction byte are loaded into the 1 register and the lower-order 4 bits into the N register. The content of the program counter is automatically incremented by one so that $R(P)$ is now "pointing" to the next byte in the memory.

The X designator selects one of the 16 registers $R(X)$ to "point" to the memory for an operand (or data) in certain ALU or I/O operations.

The N designator can perform the following five functions depending on the type of instruction fetched:

1. designate one of the 16 registers in \mathbf{R} to be acted upon during register operations;
2. indicate to the I/O devices a command code or device-selection code for peripherals;
3. indicate the specific operation to be executed during the ALU instructions, types of tests to be performed during the Branch instructions, or the specific operation required in a class of miscellaneous instructions (70-73 and 787B);
4. indicate the value to be loaded into P to designate a new register to be used as the program counter $R(P)$;

Fig. 14 - CDP1802 block diagram.
5. indicate the value to be loaded into X to designate a new register to be used as data pointer $R(X)$.

The registers in R can be assigned by a programmer in three different ways: as program counters, as data pointers, or as scratchpad locations (data registers) to hold two bytes of data.

Program Counters

Any register can be the main program counter; the address of the selected register is held in the P designator. Other registers in R can be used as subroutine program counters. By a single instruction the contents of the P register can be changed to effect a "call" to a subroutine. When interrupts are being serviced, register $R(1)$ is used as the program counter for the user's interrupt servicing routine. After reset, and during a DMA operation, $R(O)$ is used as the program counter. At all other times the register designated as program counter is at the discretion of the user.

Data Pointers

The registers in R may be used as data pointers to indicate a location in memory. The register designated by X (i.e., $R(X)$) points to memory for the following instructions (see Table 1):

1. ALU operations F1-F5, F7, 74, 75, 77;
2. output instructions 61 through 67;
3. input instructions 69 through 6 F ;
4. certain miscellaneous instructions-7073, 78.60, FO.
The register designated by N (i.e., $R(N)$) points to memory for the "load D from memory" instructions $0 N$ and 4 N and the "Store D" instruction 5N. The register designated by \mathbf{P} (i.e., the program counter) is used as the data pointer for ALU instructions F8-FD, FF, 7C, 7D, 7F. During these instruction executions, the operation is referred to as "data immediate".
Another important use of R as a data pointer supports the built-in Direct-Memory-Access (DMA) function. When a DMA-In or DMAOut request is received, one machine cycle is "stolen". This operation occurs at the end of the execute machine cycle in the current instruction. Register $R(0)$ is always used as the data pointer during the DMA operation. The data is read from (DMA-Out) or written into (DMA-In) the memory location pointed to by the $\mathbf{R}(0)$ register. At the end of the trans-
fer, $\mathbf{R}(0)$ is incremented by one so that the processor is ready to act upon the next DMA byte transfer request. This feature in the COSMAC architecture saves a substantial amount of logic when fast exchanges of blocks of data are required, such as with magnetic discs or during CRT-display-refresh cycles.

A program load facility, using the DMA-In channel, is provided to enable users to load programs into the memory. This facility provides a simple, one-step means for initially entering programs into the microprocessor system and eliminates the requirement for specialized "bootstrap" ROM's.

Data Registers

When registers in \mathbf{R} are used to store bytes of data, four instructions are provided which allow D to receive from or write into either the higher-order- or lower-order-byte portions of the register designated by N. By this mechanism (together with loading by data immediate) program pointer and data pointer designations are initialized. Also, this technique allows scratchpad registers in R to be used to hold general data. By employing increment or decrement instructions, such registers may be used as loop counters.

The \mathbf{Q} Flip Flop

An internal flip flop, Q , can be set or reset by instruction and can be sensed by conditional branch instructions. The output of \mathbf{Q} is also available as a microprocessor output.

Interrupt Servicing

Register $R(1)$ is always used as the program counter whenever interrupt servicing is initiated. When an interrupt request comes in and the interrupt is allowed by the program (again, nothing takes place until the completion of the current instruction) the contents of the X and P registers are stored in the temporary register T, and X and P are set to new values; hex digit 2 in X and hex digit 1 in \mathbf{P}. Interrupt enable is automatically deactivated to inhibit further interruptions. The user's interrupt routine is now in control; the contents of T may be saved by means of a single instruction (78) in the memory location pointed to by $R(X)$. At the conclusion of the interrupt, the user's routine may restore the pre-interrupted value of X and P with a single instruction (70 or 71). The interrupt-enable flip-flop can be activated to permit further interrupts or can be disabled to prevent them.

COSMAC Register Summary

D	8 Bits	Data Register (Accumulator)
DF	1 Bit	Data Flag (ALU Carry)
R	16 Bits	1 of 16 Scratchpad Registers
P	4 Bits	Designates which register is Program Counter
X	4 Bits	Designates which register is Data Pointer

N	4 Bits	Holds Low-Order Instr. Digit
I	4 Bits	Holds High-Order Instr. Digit
T	8 Bits	Holds old X, P after Interrupt (X is high nybble)
IE	1 Bit	Interrupt Enable
Q	1 Bit	Output Flip Flop

INSTRUCTION SET

The COSMAC instruction summary is given in Table I. Hexadecimal notation is used to refer to the 4 -bit binary codes.
In all registers bits are numbered from the least significant bit (LSB) to the most significant bit (MSB) starting with 0.
$R(W)$: Register designated by W, where $W=N$ or X. or P
$R(W) .0:$ Lower-order byte of $R(W)$
$R(W) .1:$ Higher-order byte of R(W)
Operation Notation

$$
M(R(N)) \rightarrow D ; R(N)+1 \rightarrow R(N)
$$

This notation means: The memory byte pointed to by $R(N)$ is loaded into D, and $R(N)$ is incremented by 1 .

TABLE I - INSTRUCTION SUMMARY
(For Notes, see page 13)

INSTRUCTION MEMORY REFERENCE	MNEMONIC	$\begin{aligned} & \text { OP } \\ & \text { CODE } \end{aligned}$	OPERATION
LOAD VIA N	LDN	ON	
LOAD ADVANCE	LDA	4N	$M(R(N)) \rightarrow D ; R(N)+1 \rightarrow R(N)$
LOAD VIA X	LDX	F0	$M(R(X)) \rightarrow D$
LOAD VIA X AND ADVANCE	LDXA	72	$M(R(X)) \rightarrow D ; R(X)+1 \rightarrow R(X)$
LOAD IMMEDIATE	LDI	F8	$M(R(P)) \rightarrow D ; R(P)+1 \rightarrow R(P)$
STORE VIA N	STR	5 N	$D \rightarrow M(R(N))$
STORE VIA X AND DECREMENT	STXD	73	$D \rightarrow M(R(X)) ; R(X)-1 \rightarrow R(X)$
REGISTER OPERATIONS			
INCREMENT REG N	INC	1N	$\mathrm{R}(\mathrm{N})+1 \rightarrow \mathrm{R}(\mathrm{N})$
DECREMENT REG N	DEC	2 N	$R(N)-1 \rightarrow R(N)$
INCREMENT REG X	IRX	60	$\because R(X)+1 \rightarrow R(X)$
GET LOW REG N	GLO	8N	$\mathrm{R}(\mathrm{N}) . \mathrm{O} \rightarrow \mathrm{D}$
PUT LOW REG N	PLO	AN	$\mathrm{D} \rightarrow \mathrm{R}(\mathrm{N}) .0$
GET HIGH REG N	GHI	9N	$\mathrm{R}(\mathrm{N}) .1 \rightarrow \mathrm{D}$
PUT HIGH REG N	PHI	BN	$\mathrm{D} \rightarrow \mathrm{R}(\mathrm{N}) .1$
LOGIC OPERATIONS			
OR	OR	F1	$\bar{M}(R(X)) O R D \rightarrow D$
OR IMMEDIATE	ORI	F9	$M(R(P)) O R D \rightarrow D ; R(P)+1 \rightarrow R(P)$
EXCLUSIVE OR	XOR	F3	$M(R(X))$ XOR $D \rightarrow D$
EXCLUSIVE OR IMMEDIATE	XRI	FB	$M(R(P))$ XOR $D \rightarrow D ; R(P)+1 \rightarrow R(P)$
AND	AND	F2	$M(R(X))$ AND $D \rightarrow D$
AND IMMEDIATE	ANI	FA	$M(R(P))$ AND $D \rightarrow D ; R(P)+1 \rightarrow R(P)$
SHIFT RIGHT	SHR	F6	SHIFT D RIGHT, LSB(D) $)$ DF. $0 \rightarrow$ MSB(D)
SHIFT RIGHT WITH CARRY	SHRC $\}$	76	SHIFT D RIGHT, LSB(D) \rightarrow DF. DF \rightarrow MSB(D)
RING SHIFT RIGHT	RSHR		
SHIFT LEFT	SHL	FE	$\begin{aligned} & \text { SHIFT D LEFT, MSB(D) } \rightarrow \text { DF, } \\ & 0 \rightarrow \text { LSB }(D) \end{aligned}$
SHIFT LEFT WITH CARRY RING SHIFT LEFT		7E*	SHIFT D LEFT, MSB(D) \rightarrow DF, $D F \rightarrow$ LSB (D)

[^2]MNEMONIC. EACH MNEMONIC IS INDIVIDUALLY LISTED.
-NOTE: THE ARITHMETIC OPERATIONS AND THE SHIFT INSTRUCTIONS
are the only instructions that can alter the df.
AFTER AN ADD INSTRUCTION:
DF $=1$ DENOTES A CARRY HAS OCCURRED
DF $=0$ DENOTES A CARRY HAS NOT OCCURRED
AFTER A SUBTRACT INSTRUCTION:
DF = 1 DENOTES NO BORROW. D IS A TRUE POSITIVE NUMBER
DF = 0 DENOTES A BORROW. D IS TWO'S COMPLEMENT
THE SYNTAX "-(NOT DF)" DENOTES THE SUBTRACTION OF THE BORROW

TABLE I - INSTRUCTION SUMMARY (CONT'D)

INSTRUCTION	MNEMONIC	$\begin{array}{\|c} \mathrm{OP} \\ \text { CODE } \end{array}$	OPERATION
ARITHMETIC OPERATIONS**			
ADD	ADD	F4	$M(R(X))+D+D F, D$
ADD IMMEDIATE	ADI	FC	$M(R(P))+D \rightarrow D F, D ; R(P)+1 \rightarrow R(P)$
ADD WITH CARRY	ADC	74	$M(R(X))+D+D F \rightarrow D F, D$
ADD WITH CARRY, IMMEDIATE	ADCI	7C	$M(R(P))+D+D F \rightarrow D F, D$
SUBTRACT D	SD	F5	$M(R(X))-D \rightarrow D F, D$
SUBTRACT D IMMEDIATE	SDI	FD	$M(R(P))-D \rightarrow D F, D ; R(P)+1 \rightarrow R(P)$
SUBTRACT D WITH BORROW	SDB	75	$M(R(X))-D-(N O T D F) \rightarrow$ DF, ${ }^{\text {d }}$
SUBTRACT D WITH BORROW, IMMEDIATE	SDBI	7D	$\begin{aligned} & M(R(P))-D-(N O T D F) \rightarrow D F, D ; \\ & R(P)+1 \rightarrow R(P) \end{aligned}$
SUBTRACT MEMORY	SM	F7	$D-M(R(X)) \rightarrow D F, D$
SUBTRACT MEMORY IMMEDIATE	SMI	FF	$\begin{aligned} & D-M(R(P)) \rightarrow D F, D ; \\ & R(P)+1 \rightarrow R(P) \end{aligned}$
SUBTRACT MEMORY WITH BORROW	SMB	77	$D-M(R(X))-(N O T D F) \rightarrow D F, D$
SUBTRACT MEMORY WITH BORROW, IMMEDIATE	SMBI	7F	$\begin{aligned} & D-M(R(P))-(N O T D F) \rightarrow D F, D \\ & R(P)+1 \rightarrow R(P) \end{aligned}$
BRANCH INSTRUCTIONS-SHORT BRANCH			
	BR	30	
$\begin{aligned} & \text { NO SHORT BRANCH } \\ & \text { (SEE SKP) } \end{aligned}$	NBR	38^{*}	$R(P)+1 \rightarrow R(P)$
SHORT BRANCH IF D=0	BZ	32	$\begin{aligned} & \text { IF } D=0, M(R(P)) \rightarrow R(P) .0 \\ & E L S E R(P)+1 \rightarrow R(P) \end{aligned}$
SHORT BRANCH IF D NOT 0	BNZ	3A	IF D NOT $0, M(R(P)) \rightarrow R(P) .0$ ELSE $R(P)+1 \rightarrow R(P)$
SHORT BRANCH IF DF=1	BDF	33^{*}	$\text { IF DF }=1, M(R(P)) \rightarrow R(P) .0$
SHORT BRANCH IF POS OR ZERO	BPZ		ELSE R(P) $+1 \rightarrow R(P)$
SHORT BRANCH IF EQUAL OR GREATER	$\text { BGE } \quad$		
SHORT BRANCH IF DF $=0$	BNF	$3 B^{*}$	IF DF $=0, M(R(P)) \rightarrow R(P) .0$
SHORT BRANCH IF MINUS	BM		ELSE R(P) $+1 \rightarrow R(P)$
SHORT BRANCH IF LESS	BL		
SHORT BRANCH IF Q=1	BQ	31	$\text { If } \begin{aligned} & Q=1, M(R(P)) \rightarrow R(P) .0 \\ & E L S E ~ \\ & R(P)+1 \rightarrow R(P) \end{aligned}$
SHORT BRANCH IF $\mathrm{Q}=0$	BNO	39	$\begin{aligned} \text { IF } Q=0, M(R(P)) & \rightarrow R(P) .0 \\ E L S E R(P)+1 & \rightarrow R(P) \end{aligned}$
SHORT BRANCH IF EF1=1 $(E F 1=V S S)$	B1	34	IF EF $1=1, M(R(P)) \rightarrow R(P) .0$ ELSE $R(P)+1 \rightarrow R(P)$
SHORT BRANCH IF EF $1=0$ ($\mathrm{EF} 1=\mathrm{VCC}$)	BN1	3 C	IF $E F 1=0, M(R(P)) \rightarrow R(P) .0$ ELSE $R(P)+1 \rightarrow R(P)$
SHORT BRANCH IF EF2=1 $(E F 2=V S S)$	B2	35	IF EF2 $=1, M(R(P)) \rightarrow R(P) .0$ ELSE $R(P)+1 \rightarrow R(P)$
SHORT BRANCH IF EF2=0 $(E F 2=V C C)$	BN2	3D	$\text { IF } E F 2=0, M(R(P)) \rightarrow R(P) .0$ $\text { ELSE } R(P)+1 \rightarrow R(P)$
SHORT BRANCH IF EF3=1 $(E F 3=V S S)$	B3	36	IF $E F 3=1, M(R(P)) \rightarrow R(P) .0$ ELSE R(P) $+1 \rightarrow R(P)$
SHORT BRANCH IF EF3=0 $(\overline{E F 3}=V C C)$	BN3	3E	IF $E F 3=0, M(R(P)) \rightarrow R(P) .0$ ELSE R(P) $+1 \rightarrow R(P)$
SHORT BRANCH IF EF4=1 $\overline{(E F 4}=\mathrm{VSS})$	B4	37	$\text { IF EF4 }=1, M(R(P)) \rightarrow R(P) .0$ $\text { ELSE } R(P)+1 \rightarrow R(P)$
$\begin{aligned} & \text { SHORT BRANCH IF EF4=0 } \\ & (\overline{E F 4}=\mathrm{VCC}) \end{aligned}$	BN4	3F	$\begin{gathered} \text { IF EF4 }=0, M(R(P)) \rightarrow R(P) .0 \\ E L S E R(P)+1 \rightarrow R(P) \end{gathered}$

-NOTE: THIS INSTRUCTION IS ASSOCIATED WITH MORE THAN ONE
MNEMONIC. EACH MNEMONIC IS INDIVIDUALLY LISTED.
*NOTE: THE ARITHMETIC OPERATIONS AND THE SHIFT INSTRUCTIONS ARE THE ONLY INSTRUCTIONS THAT CAN ALTER THE DF AFTER AN ADO INSTRUCTION:

DF $=1$ DENOTES A CARRY HAS OCCURRED
DF $=0$ DENOTES A CARRY HAS NOT OCCURRED
AFTER A SUBTRACT INSTRUCTION:
DF = 1 DENOTES NO BORROW. D IS A TRUE POSITIVE NUMBER
DF = O DENOTES A BORROW. D IS TWO'S COMPLEMENT
the syntax "- (NOT DF)' DENOTES Ihe SUBTRACTION OF THE BORROW

TABLE I - INSTRUCTION SUMMARY (CONT'D)

INSTRUCTION	MNEMONIC	$\begin{aligned} & \mathrm{OP} \\ & \mathrm{CODE} \end{aligned}$	OPERATION
BRANCH INSTRUCTIONS-LONG BRANCH			
LONG BRANCH	LBR	CO	$\begin{aligned} & M(R(P)) \rightarrow R(P) .1 \\ & M(R(P)+1) \rightarrow R(P) .0 \end{aligned}$
NO LONG BRANCH (SEE LSKP)	NLBR	C8*	$R(P)+2 \rightarrow R(P)$
LONG BRANCH IF $\mathrm{D}=0$	LBZ	C2	$\text { IF } \begin{array}{rl} D=0, & M(R(P)) \rightarrow R(P) .1 \\ M(R(P)+1) \rightarrow R(P) .0 \\ E L S E ~ & R(P)+2 \rightarrow R(P) \end{array}$
LONG BRANCH IF D NOT 0	LBNZ	CA	$\text { IF D NOT } 0, \begin{aligned} & M(R(P)) \rightarrow R(P) .1 \\ & M(R(P)+1) \rightarrow R(P) .0 \\ & \text { ELSE } R(P)+2 \rightarrow R(P) \end{aligned}$
LONG BRANCH IF DF=1	LBDF	C3	$\begin{aligned} & \text { IF } D F=1, M(R(P) \rightarrow R(P) .1 \\ & M(R(P)+1) \rightarrow R(P) .0 \\ & \text { ELSE } R(P)+2 \rightarrow R(P) \end{aligned}$
LONG BRANCH IF DF=0	LBNF	CB	$\begin{aligned} & \text { IF } D F=0, M(R(P)) \rightarrow R(P) .1 \\ & M(R(P)+1) \rightarrow R(P) .0 \\ & \text { ELSE } R(P)+2 \rightarrow R(P) \end{aligned}$
LONG BRANCH IF $\mathrm{Q}=1$	LBQ	C1	$\begin{array}{rl} \text { IF } \mathrm{Q}=1, & M(R(P)) \rightarrow R(P) .1 \\ M(R(P)+1) \rightarrow R(P) .0 \\ E L S E & R(P)+2 \rightarrow R(P) \end{array}$
LONG BRANCH IF $\mathrm{Q}=0$	LBNO	C9	$\text { IF } \begin{array}{rl} \mathrm{Q}=0, \mathrm{M}(R(P)) \rightarrow R(P) .1 \\ M(R(P)+1) \rightarrow R(P) .0 \\ E L S E ~ & R(P)+2 \rightarrow R(P) \end{array}$
SKIP INSTRUCTIONS			
SHORT SKIP (SEE NBR)	SKP	38°	$R(P)+1 \rightarrow R(P)$
LONG SKIP (SEE NLBR)	LSKP	C8 ${ }^{\text {- }}$	$R(P)+2 \rightarrow R(P)$
LONG SKIP IF D=0	LSZ	CE	$\text { IF } D=0, R(P)+2 \rightarrow R(P)$ ELSE CONTINUE
LONG SKIP IF D NOT 0	LSNZ	C6	IF D NOT $0, R(P)+2 \rightarrow R(P)$ ELSE CONTINUE
LONG SKIP IF DF=1	LSDF	CF	IF $D F=1, R(P)+2 \rightarrow R(P)$ ELSE CONTINUE
LONG SKIP IF DF=0	LSNF	C7	$\begin{gathered} \text { IF DF }=0, R(P)+2 \rightarrow R(P) \\ \text { ELSE CONTINUE } \end{gathered}$
LONG SKIP IF Q=1	LSO	CD	If $Q=1, R(P)+2 \rightarrow R(P)$ ELSE CONTINUE
LONG SKIP IF $\mathrm{Q}=0$	LSNQ	C5	$\text { IF } \mathrm{Q}=0, \mathrm{R}(\mathrm{P})+2 \rightarrow \mathrm{R}(\mathrm{P})$ ELSE CONTINUE
LONG SKIP IF IE=1	LSIE	CC	$\begin{gathered} \text { IF } \mathrm{IE}=1, \mathrm{R}(P)+2 \rightarrow \mathrm{R}(\mathrm{P}) \\ \text { ELSE CONTINUE } \\ \hline \end{gathered}$
CONTROL INSTRUCTIONS			
IDLE	IDL	00\#	WAIT FOR DMA OR INTERRUPT; M(R $(0) \rightarrow$ BUS
NO OPERATION	NOP	C4	CONTINUE
SET P	SEP	DN	$\mathrm{N} \rightarrow \mathrm{P}$
SET X	SEX	EN	$N \rightarrow X$
SET 0	SEQ	7 B	$1 \rightarrow 0$
RESET Q	REQ	7 A	$0 \rightarrow 0$
SAVE	SAV	78	$T \rightarrow M(R(X))$
PUSH X,P TO STACK	MARK	79	$(X, P) \rightarrow T_{;} \quad(X, P) \rightarrow M(R(2))$ THEN $P \rightarrow X ; R(2)-1 \rightarrow R(2)$
RETURN	RET	70	$\underset{1 \rightarrow \mid E}{M(R(X)) \rightarrow(X, P) ; R(X)+1 \rightarrow R(X)}$
DISABLE	DIS	71	$\begin{aligned} & M(R(X)) \rightarrow(X, P) ; R(X)+1 \rightarrow R(X) \\ & 0 \rightarrow I E \end{aligned}$

\#An idle instruction initiates a repeating S1 cycle. The processor will continue to idle until an I/O request (INTERRUPT, DMA-IN, or DMA-OUT) is activated. When the request is acknowledged, the IDLE cycle is terminated and the I/O request is serviced, and then normal operation is resumed.

TABLEI - INSTRUCTION SUMMARY (CONT'D)

INSTRUCTION	MNEMONIC	$\begin{aligned} & \text { OP } \\ & \text { CODE } \end{aligned}$	OPERATION
INPUT-OUTPUT BYTE TRANSFER			
OUTPUT 1	OUT 1	61	
OUTPUT 2	OUT 2	62	$M(R(X)) \rightarrow B \cup S ; R(X)+1 \rightarrow R(X) ; N$ LINES $=2$
OUTPUT 3	OUT 3	63	$M(R(X)) \rightarrow B \cup S ; R(X)+1 \rightarrow R(X) ; N$ LINES $=3$
OUTPUT 4	OUT 4	64	$M(R(X)) \rightarrow$ BUS; $R(X)+1 \rightarrow R(X) ;$ L LINES $=4$
OUTPUT 5	OUT 5	65	$M(R(X)) \rightarrow B U S ; R(X)+1 \rightarrow R(X) ; ~ N$ LINES $=5$
OUTPUT 6	OUT 6	66	$M(R(X)) \rightarrow B \cup S ; R(X)+1 \rightarrow R(X) ; N$ LINES $=6$
OUTPUT 7	OUT 7	67	$M(R(X)) \rightarrow B U S ; R(X)+1 \rightarrow R(X) ; ~ N L I N E S=7$
INPUT 1	INP 1	69	$B U S \rightarrow M(R(X)) ; ~ B U S \rightarrow D ; N$ LINES $=1$
INPUT 2	INP 2	6A	BUS \rightarrow (R(X)); BUS \rightarrow D; N LINES $=2$
INPUT 3	INP 3	6B	BUS \rightarrow ($(R(X)) ; B U S \rightarrow$; N LINES $=3$
INPUT 4	INP 4	6C	BUS \rightarrow M (R(X)); BUS \rightarrow; N LINES $=4$
INPUT 5	INP 5	6D	BUS \rightarrow M $(R(X)) ; B \cup S \rightarrow D ; N$ LINES $=5$
INPUT 6	INP 6	6E	BUS \rightarrow ($(R(X)) ; B U S \rightarrow$; N LINES $=6$
INPUT 7	INP 7	6F	BUS \rightarrow M $(R(X)$; $\mathrm{BUS} \rightarrow \mathrm{D} ; \mathrm{N}$ LINES $=7$

1. Long-Branch, Long-Skip and No Op instructions are the only instructions that require three cycles to complete (1 fetch +2 execute).
Long-Branch instructions are three bytes long. The first byte specifies the condition to be tested; and the second and third byte, the branching address.
The long-branch instructions can:
a) Branch unconditionally
b) Test for $\mathrm{D}=0$ or $\mathrm{D} \neq 0$
c) Test for $\mathrm{DF}=0$ or $\mathrm{DF}=1$
d) Test for $\mathrm{Q}=0$ or $\mathrm{Q}=1$
e) effect an unconditional no branch

If the tested condition is met, then branching takes place; the branching address bytes are loaded in the high-and-low-order bytes of the current program counter, respectively. This operation effects a branch to any memory location.
If the tested condition is not met, the branching address bytes are skipped over, and the next instruction in sequence is fetched and executed. This operation is taken for the case of unconditional no branch (NLBR).
2. The short-branch instructions are two bytes long. The first byte specifies the condition to be tested, and the second specifies the branching address.
The short-branch instructions can:
a) Branch unconditionally
b) Test for $\mathrm{D}=0$ or $\mathrm{D} \neq 0$
c) Test for $\mathrm{DF}=0$ or $\mathrm{DF}=1$
d) Test for $\mathrm{Q}=0$ or $\mathrm{Q}=1$
e) Test the status (1 or 0) of the four EF flags
f) Effect an unconditional no branch

If the tested condition is met, then branching takes place; the branching address byte is loaded into the low-order byte position of the current program counter. This effects a branch with the current 256 -byte page of the memory, i.e., the page which hoids the branching address. If the tested condition is not met, the branching address byte is skipped over, and the next instruction in sequence is fetched and executed. This same action is taken in the case of unconditional no branch (NBR)
3. The skip instructions are one byte long. There is one Unconditional Short-Skip (SKP) and eight Long-Skip instructions.
The Unconditional Short-Skip instruction takes 2 cycles to complete (1 fetch +1 execute). Its action is to skip over the byte following it. Then the next instruction in sequence is fetched and executed. This SKP instruction is identical to the unconditional no-branch instruction (NBR) except that the skipped-over byte is not considered part of the program.
The Long-Skip instructions take three cycles to complete (1 fetch +2 execute).
They can:
a) Skip unconditionally
b) Test for $\mathrm{D}=0$ or $\mathrm{D} \neq 0$
d) Test for $\mathrm{Q}=0$ or $\mathrm{Q}=1$
c) Test for $\mathrm{DF}=0$ or $\mathrm{DF}=1$
e) Test for $\mathrm{IE}=1$

If the tested condition is met, then Long Skip takes place; the current program counter is incremented twice. Thus two bytes are skipped over and the next instruction in sequence is fetched and executed. If the tested condition is not met, then no action is taken.
Execution is continued by fetching the next instruction in sequence.

TERMINAL ASSIGNMENT

SIGNAL DESCRIPTIONS

BUS 0 to BUS 7 (Data Bus):
8 -bit directional DATA BUS lines. These lines are used for transferring data between the memory, the microprocessor, and I/O devices.

N0 to N2 (I/O Lines):

Activated by an $1 / O$ instruction to signal the 1/O control logic of a data transfer between memory and I/O interface. These lines can be used to issue command codes or device selection codes to the I/O devices (independently or combined with the memory byte on the data bus when an I/O instruction is being executed). The N bits are low at all times except when an I/O instruction is being executed. During this time their state is the same as the corresponding bits in the N register.
The direction of data flow is defined in the I/O instruction by bit N3 (internally) and is indicated by the level of the MRD signal.
$\overline{M R D}=V C C:$ Data from I/O to CPU and Memory
$\overline{M R D}=$ VSS: Data from Memory to I/O

$\overline{E F 1}$ to $\overline{E F 4}$ (4 Flags):

These inputs enable the $1 / O$ controllers to transfer status information to the processor. The levels can be tested by the conditional branch instructions. They can be used in conjunction with the INTERRUPT request line to establish interrupt priorities. These flags can also be used by $1 / O$ devices to "call the attention" of the processor, in which case the program must routinely test the status of these flag(s). The flag(s) are sampled at the beginning of every S 1 cycle.

INTERRUPT, $\overline{\text { DMA-IN }}, \overline{\text { DMA-OUT }}$ (3 I/O

 Requests):These inputs are sampled by the CDP 1802 during the interval between the leading edge of TPB and the leading edge of TPA.
Interrupt Action: X and P are stored in T after executing current instruction; designator X is set to 2 ; designator P is set to 1 ;
interrupt enable is reset to 0 (inhibit); and instruction execution is resumed. The interrupt action requires one machine cycle (S3).
DMA Action: Finish executing current instruction; $R(0)$ points to memory area for data transfer; data is loaded into or read out of memory; and increment $\mathrm{R}(0)$.
Note: In the event of concurrent DMA and INTERRUPT requests, DMA-IN has priority followed byDMA-OUT and thenINTERRUPT
SC0, SC1, (2 State Code Lines):
These outputs indicate that the CPU is: 1) fetching an instruction, or 2) executing an instruction, or 3) processing a DMA request, or 4) acknowledging an interrupt request. The levels of state code are tabulated below. All states are valid at TPA. $H=V C C, L=V S S$.

State Type	State Code Lines	
	SC1	SC0
S0 (Fetch)	L	L
S1 (Execute)	L	H
S2 (DMA)	H	L
S3 (Interrupt)	H	H

TPA, TPB (2 Timing Pulses):

Positive pulses that occur once in each machine cycle (TPB follows TPA). They are used by I/O controllers to interpret codes and to time interaction with the data bus. The trailing edge of TPA is used by the memory system to latch the higher-order byte of the 16 -bit memory address. TPA is suppressed in IDLE when the CPU is in the load mode.

MAO to MA7 (8 Memory Address Lines):

In each cycle, the higher-order byte of a 16 bit COSMAC memory address appears on the memory address lines MAO-7 first. Those bits required by the memory system can be strobed into external address latches by timing pulse TPA. The low-order byte of the 16 bit address appears on the address lines after the termination of TPA. Latching of all 8 higher-order address bits would permit a memory system of 64 K bytes.

$\overline{M W R}$ (Write Pulse):

A negative pulse appearing in a memory-write cycle, after the address lines have stabilized.

$\overline{M R D}$ (Read Level):

A low level on MRD indicates a memory read cycle. It can be used to control three-state outputs from the addressed memory which may have a common data input and output bus. If a memory does not have a three-state high-impedance output, $\overline{\mathrm{MRD}}$ is useful for driving memory/bus separator gates. It is also used to indicate the direction of data transfer during an I/O instruction. For additional information see Table I.

Q:

Single bit output from the CPU which can be set or reset under program control. During SEQ or REQ instruction execution, Q is set or reset between the trailing edge of TPA and the leading edge of TPB.
CLOCK:
Input for externally generated single-phase clock. A typical clock frequency is 6.4 MHz at $\mathrm{VCC}=\mathrm{VDD}=10$ volts. The clock is counted down internally to 8 clock pulses per machine cycle.
$\overline{X T A L}:$
Connection to be used with clock input terminal, for an external crystal, if the on-chip oscillator is utilized. The crystal is connected between terminals 1 and 39 (CLOCK and XTAL) in parallel with a resistance (10 megohms typ.). Frequency trimming capacitors may be required at terminals 1 and 39. For additional information see ICAN-6565.

$\overline{\text { WAIT, }} \overline{\text { CLEAR }}$ (2 Control Lines):

Provide four control modes as listed in the following truth table.

$\overline{\text { CLEAR }}$	$\overline{\text { WAIT }}$	MODE
L	L	Load
L	H	Reset
H	L	Pause
H	H	Run

The function of the modes are defined as follows:

Load

Holds the CPU in the IDLE execution state and allows an I/O device to load the memory without the need for a "bootstrap" loader. It modifies the IDLE condition so that DMA-IN operation does not force execution of the next instruction.

Reset

Registers I, N, Q are reset, IE is set and 0 's (VSS) are placed on the data bus. TPA and TPB are suppressed while reset is held and the CPU is placed in S1. The first machine cycle after termination of reset is an initialization cycle which requires 9 clock pulses. During this cycle the CPU remains in S1 and registers X, P, and $R(0)$ are reset. Interrupt and DMA servicing are suppressed during the initialization cycle. The next cycle is an SO, S1, or an S2 but never an S3. With the use of a 71 instruction followed by 00 at memory locations 0000 and 0001, this feature may be used to reset IE, so as to preclude interrupts until ready for them. Powerup reset can be realized by connecting a buffered RC network to CLEAR. For additional information see ICAN-6581.

Pause

Stops the internal CPU timing generator on the first negative high-to-low transition of the input clock. The oscillator continues to operate, but subsequent clock transitions are ignored.

Run

May be initiated from the Pause or Reset mode functions. If initiated from Pause, the CPU resumes operation on the first negative high-to-low transition of the input clock. When initiated from the Reset operation, the first machine cycle following Reset is always the initialization cycle. The initialization cycle is then followed by a DMA (S2) cycle or fetch (SO) from location 0000 in memory.
$\mathbf{V}_{\text {DD }}, V_{\text {SS }}, V_{\text {CC }}$ (Power Levels):
The internal voltage supply VDD is isolated from the Input/Output voltage supply VCC so that the processor may operate at maximum speed while interfacing with various external circuit technologies, including T2L at 5 volts. VCC must be less than or equal to VDD. All outputs swing from VSS to VCC. The recommended input voltage swing is VSS to VCC.

RUN-MODE STATE TRANSITIONS

The CDP1802 and CDP1802C CPU state transitions when in the RUN, RESET, and LOAD modes are shown in Fig. 15. Each machine cycle requires the same period of time, 8 clock pulses, except the initialization cycle, which requires 9 clock pulses. The execution of an instruction requires either two or three machine cycles, SO followed by a single S1 cycle or two S1 cycles. S2 is the response to a DMA request and S3 is the interrupt response. Table II shows the conditions on Data Bus and Memory-Address lines during all machine states.

2Cs-27436R2

Fig. 15 - CDP1802 microprocessor state transistions.

Fig. 16- Timing diagram for machine cycle type Nos. 1, 2, 3, and 4 (propagation delays not shown).

Fig. 17 - Timing diagram for machine cycle type No. 5 (propagation delays not shown).

Fig. 18 - Timing diagram for machine cycle type No. 6 (propagation delays not shown).

Fig. 19 - Timing diagram for machine cycle type No. 7 (propagation delays not shown).

Fig. 20 - Timing diagram for machine cycle type No. 8 (propagation delays not shown).

Fig. 21 - Timing diagram for machine cycle type No. 9 (propagation delays not shown).

TABLE II. CONDITIONS ON DATA BUS AND MEMORY ADDRESS LINES DURING ALL MACHINE STATES

STATE	1 N	MNEMONIC	INSTRUCTION	OPERATION	DATA BUS	MEMORY ADDRESS	MRD	NOTES ${ }^{\text {G }}$
S1	RESET			JAM: I,N, Q, X, P = $0 \quad I E=1$	0	$\begin{aligned} & R(0) \\ & \text { UNDEFINED } \end{aligned}$	1	A
	FIRST CYCLE AFTER RESET NOT PROGRAMMER ACCESSIBLE			INITIALIZE: R(0)-0	0	R (0) UNDEFINED	1	B
So	FETCH		IDLE	$\mathrm{M}(\mathrm{R}(\mathrm{P}) \mathrm{l} \rightarrow \mathrm{I} . \mathrm{N} \quad \mathrm{R}(\mathrm{P})+1$	$\mathbf{M}(\mathrm{R}(\mathrm{P})$)	$\mathrm{R}(\mathrm{P})$	0	C
	0	IDL		[Load = 0 (Program ldle)]	M (R10)	$\mathrm{R}(0)$	0	D, 3
				[Load = 1 (Load Mode)]	$\mathrm{M}(\mathrm{R}(0))$	PREVIOUS ADDRESS	0	E, 3
	$\mathrm{N} \neq 0$	LON	LOAD D VIA N	$M(R(N)) \rightarrow D$	M(R(N))	R(N)	0	3
	1 N	INC	INCREMENT	R(N)+1	FLOAT	R(N)	1	1
	2 N	DEC	DECREMENT	R(N)-1	FLOAT	R(N)	1	1
	3 N	-	SHORT BRANCH	[BRANCH NOT TAKEN]	M(R(P) $)$	R(P)	0	3
				[BRANCH TAKEN]	M(R(P) $)$	R(P)	0	
	$4{ }^{4} \mathrm{~N}$	LDA	LOAD ADVANCE	$\mathrm{M}(\mathrm{R}(\mathrm{N}) \mathrm{\}} \rightarrow \mathrm{D}$ R(N)+1	M(R(N) $)$	R(N)	0	3
	5	STR	STORE VIA	$\mathrm{O} \rightarrow \mathrm{M}(\mathrm{R}(\mathrm{N})$)	D	R(N)	1	3
	0	IRX	INC REG X	$\mathrm{R}(\mathrm{X})+1$	M(A) X$)$)	$\mathrm{R}(\mathrm{X})$	0	3
	$6 \mathrm{~N}=1-7$	OUT N	OUTPUT	$\mathrm{M}(\mathrm{R}(\mathrm{X}) \mathrm{)} \rightarrow \mathrm{BUS} \mathrm{R}(\mathrm{X})+1$	M(R(X) $)$	$R(X)$	0	6
	$\mathrm{N}=9-\mathrm{F}$	INP N	INPUT	$B \cup S \rightarrow M(R(X)), ~ D$	1/O DEVICE	$\mathrm{R}(\mathrm{X})$	1	5
	012	RET	RETURN	$\begin{aligned} & M(R(X)) \rightarrow(X, P) \\ & R(X)+1: \quad 1 \rightarrow 1 E \end{aligned}$	M(R(X) $)$	$\mathrm{R}(\mathrm{X})$	0	3
		DIS	DISABLE	$\begin{aligned} & M(R(X)) \rightarrow(X, P) \\ & R(X)+1 ; 0 \rightarrow I E \end{aligned}$	M(R(X) $)$	$\mathrm{R}(\mathrm{X})$	0	3
		LDXA	LOAD VIA X AND ADVANCE	$\begin{array}{\|l\|} \hline M(R(X)) \rightarrow D \\ R(X)+1 \\ \hline \end{array}$	$\mathrm{M}(\mathrm{R}(\mathrm{X})$)	R(X)	0	3
	3	STXD	STORE VIA X AND DECREMENT	$\begin{aligned} & D \rightarrow M(R(X)) \\ & R(X)-1 \end{aligned}$	D	$\mathrm{R}(\mathrm{X})$	1	2
	$7{ }^{7} \mathbf{4 , 5 , 7}$	-		ALU OPERATION	$\mathrm{M}(\mathrm{R}(\mathrm{X})$)	R(X)	0	3
	6	-		ALU OPERATION	FLOAT	$\mathrm{R}(\mathrm{X})$	1	1
	8	SAV	SAVE	$\mathrm{T} \rightarrow \mathrm{M}(\mathrm{R}(\mathrm{X})$)	T	$\mathrm{R}(\mathrm{X})$	1	2
	9	MARK	MARK	$\begin{gathered} (X, P) \rightarrow T, M(R(2)) \\ P \rightarrow X ; R(2)-1 \end{gathered}$	T	R(2)	1	2
	A	REQ	RESET Q	$\mathrm{Q}=0$	FLOAT	$\mathrm{R}(\mathrm{P})$	1	1
$\begin{aligned} & \text { (Exe- } \\ & \text { cute) } \end{aligned}$	B	SEQ	SETO	Q = 1	FLOAT	R(P)	1	1
	C, D, F			ALUOPERATION IMMEDIATE	M ${ }^{\text {R }}(\mathrm{P}) 1$	$\mathrm{R}(\mathrm{P})$	0	3
	E			ALU OPERATION	FLOAT	R(P)	1	1
	8 N	GLO	GET LOW	$\mathrm{R}(\mathrm{N}) .0 \rightarrow \mathrm{D}$	$\mathrm{R}(\mathrm{N}) .0$	R (N)	1	1
	9 N	GHI	GET HIGH	R(N) . $1 \rightarrow$ D	$\mathrm{R}(\mathrm{N}) .1$	R(N)	1	1
	A ${ }^{\text {A }}$	PLO	PUT LOW	$D \rightarrow R(N) .0$	D	R(N)	1	1
	B B	PHI	PUT HIGH	$\mathrm{C} \rightarrow \mathrm{R}(\mathrm{N}) .1$	D	$\mathrm{R}(\mathrm{N})$	1	1
	0,1,2 $3,8,9$		LONG BRANCH	[BRANCH NOT TAKEN]	M (R (P) $)$	$\mathrm{R}(\mathrm{P})$	0	4
	A,B			[BRANCH TAKEN]	M(R(P) $)$	$R(P)$	0	4
	$C \begin{aligned} & 5,6,7 \\ & C, D, E \end{aligned}$		LONG	[SKIP NOT TAKEN]	$M(R(P))$	$\mathrm{R}(\mathrm{P})$	0	4
	C.D.E		SKIP	[SKIP TAKEN]	M(R(P) $)$	R(P)	0	4
	4	NOP	NO OPERATION	NO OPERATION	M(R(P) $)$	R(P)	0	4
	D N	SEP	SET P	$N \rightarrow P$	N N	R(N)	1	1
	E N	SEX	SET X	$N \rightarrow X$	N N	$\mathrm{R}(\mathrm{N})$	1	1
	0	LDX	LOAD VIA X	$\mathrm{M}(\mathrm{R}(\mathrm{X})$) $\rightarrow \mathrm{D}$	M (RiX) ${ }^{\text {(}}$	$\mathrm{R}(\mathrm{X})$	0	3
	$1,2,3$ $4,5,7$			ALU OPERATION	M (R(X) $)$	$\mathrm{R}(\mathrm{X})$	0	3
	6	SHR	SHIFT RIGHT	$\begin{aligned} & \text { SHIFT D RIGHT } \\ & \text { LSB(D) } \rightarrow \text { DF } 0 \rightarrow \text { MSB(D) } \end{aligned}$	FLOAT	$\mathrm{R}(\mathrm{X})$	1	1
	F 8	LDI	LOAD IMMEDIATE	$\mathrm{M}(\mathrm{R}(\mathrm{P})) \rightarrow \mathrm{D} \quad \mathrm{R}(\mathrm{P})+1$	M(R(P)	$\mathrm{R}(\mathrm{P})$	0	3
	$\begin{aligned} & 9, A, B \\ & C, D, F \end{aligned}$			$\begin{aligned} & \text { ALU OPERATION } \\ & \text { IMMEDIATE } \end{aligned}$	M (R(P) $)$	$R(P)$	0	3
	E	SHL	SHIFT LEFT	ALU OPERATION	FLOAT	R(P)	1	1
S2	IN REQUEST		DMA IN	BUS \rightarrow M (R(0)	$\begin{aligned} & \hline \text { V/O } \\ & \text { DEVICE } \end{aligned}$	R (0)	1	F. 7
	OUT REQUEST		DMA OUT	$M(R 10)$) ${ }_{\text {BUS }}$	M(R(0) $)$	R (0)	0	F. 8
S3	INTERRUPT			$\begin{aligned} & X, P \rightarrow T, 0 \rightarrow I E \\ & 2 \rightarrow X, ~ \end{aligned}$	FLOAT	R (N)	1	9

NOTES:
A. $I E=1 ; T P A, T P B$ suppressed, state $=\$ 1$
B. BUS $=0$ for entire cycle
C. Next state always S1
D. Wait for DMA or INTERRUPT
E. Suppress TPA, wair for DMA
F. IN REQUEST has priority over OUT REQUEST
G. Numbers refer to machine cycles types - refer to timing diagrams, Figs. 16 through 20.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils $\left(10^{-3}\right.$ inch $)$.

The photographs and dimensions of each COS/MOS chip represent a chip when it is part of the wafer. When the wafer is cut into chips, the cleavage angles are 57° instead of 90° with respect to the face of the chip. Therefore, the isolated chip is actually $7 \mathrm{mi} / \mathrm{s}(0.17 \mathrm{~mm})$ larger in both dimensions.

OPERATING AND HANDLING CONSIDERATIONS

1. Handling

All inputs and outputs of RCA COS/MOS devices have a network for electrostatic protection during handling. Recommended handling practices for COS/MOS devices are described in ICAN-6525, "Guide to Better Handling and Operation of CMOS Integrated Circuits."
2. Operating

Operating Voltage

During operation near the maximum supply voltage limit, care should be taken to avoid or suppress power supply turn-on and turn-off transients, power supply ripple, or ground noise; any of these conditions must not cause V_{DD} -
$V_{\text {SS }}$ to exceed the absolute maximum rating.

Input Signals

To prevent damage to the input protection circuit, input signals should never be greater than V_{CC} nor less than V_{SS}. Input currents must not exceed 10 mA even when the power supply is off.

Unused Inputs

A connection must be provided at every input terminal. All unused input terminals must be connected to either V_{CC} or $V_{S S}$, whichever is appropriate.

Output Short Circuits

Shorting of outputs to $V_{D D}, V_{C C}$ or $V_{\text {SS }}$ may damage COS/MOS devices by exceeding the maximum device dissipation.

DIMENSIONAL OUTLINES

(D) SUFFIX

40-Lead Dual-In-Line Side-Brazed Ceramic Package

SYMBOL	INCHES		NOTE	MILLIMETERS	
	MIN.	MAX.		MIN.	MAX.
A	1.980	2.020		50.30	51.30
C	0.095	0.155		2.43	3.93
D	0.017	0.023		0.43	0.56
F	0.050 REF.			1.27 REF.	
G	0.100 BSC		1	2.54 BSC	
H	0.030	0.070		0.76	1.78
J	0.008	0.012	3	0.20	0.30
K	0.125	0.175		3.18	4.45
L	0.580	0.620	2	14.74	15.74
M	-	7°		-	7°
P	0.025	0.050		0.64	1.27
N	4	0			

92CM-27029R2

NOTES:

1. Leads within $\mathbf{0 . 0 0 5}$ " $\mathbf{(0 . 1 3 ~ m m})$ redius of True Position at maximum material condition.
2. Center to center of leads when formed parallel.
3. When this device is supplied solder dipped, the maximum leed thickneas (nerrow portion) will not exceed $0.013^{\prime \prime}(0.33 \mathrm{~mm})$

When incorporating RCA Solid State Devices in equipment, it is recommended that the designer refer to "Operating Considerations for RCA Solid State Devices", Form No. 1CE-402, available on request from RCA Solid State Division, Box 3200, Somerville, N. J. 08876.
(E) SUFFIX

40-Lead Dual-In-Line Plastic Package

SYMBOL	INCHES		NOTE	MILLIMETERS	
	MIN.	MAX.		MIN.	MAX.
A	0.120	0.250		3.10	6.30
A_{1}	0.020	0.070		0.51	1.77
B	0.016	0.020		0.407	0.508
B_{1}	0.028	0.070		0.72	1.77
C	0.008	0.012	1	0.204	0.304
D	2.000	2.090		50.80	53.09
E1	0.515	0.580		13.09	14.73
${ }^{\text {e }}$	$\begin{aligned} & 0.100 \mathrm{TP} \\ & 0.600 \mathrm{TP} \end{aligned}$		2	$\begin{aligned} & 2.54 \mathrm{TP} \\ & 15.24 \mathrm{TP} \end{aligned}$	
${ }^{8}$ A			2,3		
L	0.100	0.200		2.54	5.00
L_{2}	0.000	0.030		0.00	0.76
α	$0^{0} 15^{\circ}$		4	0^{0}	15°
$\begin{gathered} \mathbf{N} \\ \mathbf{N}_{1} \end{gathered}$	$\begin{gathered} 40 \\ 0 \end{gathered}$		$\begin{aligned} & \hline 5 \\ & 6 \end{aligned}$	$\begin{gathered} 40 \\ 0 \end{gathered}$	
\mathbf{Q}_{1}	0.065	0.095		1.66	2.41
S	0.040	0.100		1.02	2.54

NOTES:
92CS-30959
Refer to Rules for Dimensioning (JEDEC Publication No. 95) for Axial Lead Product Outlines.

1. When this device is supplied solder-dipped, the maximum lead thickness (narrow portion) will not exceed 0.013" $(0.33 \mathrm{~mm})$.
2. Leads within $0.005^{\prime \prime}(0.12 \mathrm{~mm})$ radius of True Position (TP) at gauge plane with maximum material condition and unit instalied.
3. e_{A} applies in zone L_{2} when unit installed.
4. a applies to spread teads prior to installation.
5. N is the maximum quantity of lead positions.
6. N_{1} is the quantity of allowable missing leads.

[^0]: Trademark(s) © Registered Marca(s) Registrada(s)

[^1]: - Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal $V_{D D}$.

 Maximum limits of minimum characteristics are the values above which all devices function.

[^2]: - NOTE: THIS INSTRUCTION IS ASSOCIATED WITH MORE THAN ONE

